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Abstract

Using classic results of algebraic geometry for birational plane mappings in plane CP? we present
a general approach to algebraic integrability of autonomous dynamical systems in C* with discrete
time and systems of two autonomous functional equations for meromorphic functions in one com-
plex variable defined by birational maps in C2. General theorems defining the invariant curves, the
dynamics of a birational mapping and a general theorem about necessary and sufficient conditions
for integrability of birational plane mappings are proved on the basis of a new idea —a decomposition
of the orbit set of indeterminacy points of direct maps relative to the action of the inverse mappings.
A general method of generating integrable mappings and their rational integrals (invariants) / is pro-
posed. Numerical characteristics Ny of intersections of the orbits ¢,,”‘ O; of fundamental or indeter-
minacy points O; € O N §, of mapping @,,, where O = {O;} is the set of indeterminacy points of @,
and S is a similar set for invariant /, with the corresponding set O'N S, where 0" = { O/} is the set of
indeterminacy points of inverse mapping ¢!, are introduced. Using the method proposed we obtain
all nine integrable multiparameter quadratic birational reversible mappings with the zero fixed point
and linear projective symmetry S = CAC™', A = diug(Z1), with rational invariants generated by
invariant straight lines and conics. The relations of numbers N, with such numerical characteristics
of discrete dynamical systems as the Amold complexity and their integrability are established for
the integrable mappings obtained. The Amold complexities of integrable mappings obtained are
determined. The main results are presented in Theorems 2-5. in Tables | and 2, and in Appendix A.
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1. Introduction

The problem of integrability of birational or Cremona mappings is constantly attracting
attention of many researchers already in the course far more than 20 years [ 1-20]. The inter-
estin this problem stems from the fact that dynamical systems with discrete time defined by
such maps arise in very different scientific problems: autonomous reductions of differential—
difference soliton equations [2,3], non-algebraic integrable reversible functional equations
of static model in the dispersion approach [4-8], quantum integrable systems in lattice
statistical mechanics [10-15], discrete versions of integrable systems of classic mechanics
[18], integrable lattice nonlinear evolution equations [19,20] and others (see, for example,
survey [9]).

As arule, owing to the existence of some discrete symmetry in systems, the corresponding
mappings are reversible dynamical systems which are qualitatively similar to Hamiitonian
systems [46—60], although, e.g., the reversible Kolmogorov—Arnold-Moser (KAM) theory
possesses some features having no analogues for Hamiltonian systems [60]. The theorems
on the existence of the KAM tori in reversible non-Hamiltonian flows [46-51,54-58] and
non-symplectic mapping [49-52,58,59] further promote an investigation of the integrability
problem of birational mappings.

Recently, some authors have studied k-reversible mappings [61-63], which also may
play an important role in various scientific problems. Therefore, a general approach to
integrability problem can also be useful for their theory. On the other hand, it seems obvious
that the integrability problem and the mapping dynamics are closely related and in this
context it is very important to comprehend the dynamics of mappings and to establish the
relations between integrability and such numerical characteristic of dynamical systems as
the complexity introduced recently by Arnold [43,44].

Attempts to understand integrability of some concrete dynamical systems from the
algebraic-geometry point of view [15] or in the framework of the discrete version [16,17]
of the Painlevé idea about a moving singularity were undertaken recently.

Note also that integrability of polynomial plane mappings in the subgroup GA, € BirCP?
(or Crp) was investigated in papers [9,64,65] and it is very interesting to analyse this problem
from a general viewpoint of integrability of birational mappings.

In papers [9,65] an integrability of autonomous dynamical system with discrete time
given by bipolynomial mapping in C? is defined by means of an existence of a non-trivial
commuting map (symmetry of dynamical system). Below, in this paper, we define an in-
tegrability or algebraic integrability of autonomous dynamical system with discrete time
given by birational mapping in C2 by means of an existence of a rational first integral or
invariant of the dynamical system.

In this paper, using classic results of algebraic geometry for birational mapping in plane
CP?, we find necessary and sufficient conditions for algebraic integrability of autonomous
dynamical systems in C? with discrete time and systems of two autonomous functional
equations for meromorphic functions in one complex variable defined by birational map-
pings in C2, we present the method of obtaining their rational first integrals and also obtain
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the equations of the dynamics of birational mappings. We set the relation of some new
numerical characteristics of dynamics of mappings with the integrability and the Amold
complexity. We also present the method of generating integrable plane mappings and on
the basis of this method we obtain nine integrable multiparameter quadratic birational re-
versible mappings with zero fixed point. An important role in our approach belongs to a
new concept of the decomposition of the set of indeterminacy points of birational mapping
and the set of their orbits. Thus, whereas in papers [4.5] and [6-8] we established very
interesting relations between the non-algebraic iniegrability of some functional equations,
defined by birational mappings in the group BirCP", and classic results [38,39] in the theory
of dynamical systems and in the transcendental number theory [40,41] (see also [42] where
were also used the famous results [40,41]), respectively, in this paper we establish a deep
relation of the algebraic integrability problem with the algebraic geometry and solve the
problem.

In Section 2, we reduce the problem of algebraic integrability of autonomous dynamical
systems in C* with discrete time and systems of autonomous functional equations for two
meromorphic functions in one complex variable to a finding of a rational invariant for
corresponding birational mapping in CP?.

Then in Section 3, we present a necessary brief review of the main definitions and results
of the theory of mappings in the group BirCP? given in monograph [24]. In Section 4, we
formulate a theorem on invariant curves, introduce a new concept of the decomposition
of the set of indeterminacy points of a mapping and that of the set of their orbits, prove a
theorem on dynamics of mappings and the central theorem of the paper on integrability of
birational mappings and on this basis propose a general method of generating integrable of
birational plane mappings.

In Section 5, we apply this method to quadratic birational reversible mappings and gen-
erate all nine integrable maps with invariant straight lines and conics, the explicit forms
of which with invariants in the triangular and usual basis are given in Appendix A. The
results of the dynamical studies of these maps are presented in Tables 1 and 2, where are
also given the numbers Ny, related with the complexity by Arnold and having the meaning
of the sublevels of the complexity.

In the end, in conclusion, Section 6, we briefly discuss a relation of our results with the
famous results of Kantor {28-31] and Wiman [34] in the finite subgroups of the Cremona
group BirCP? and results of M. Noether, E. Bertini, G. Castelnuovo and S. Kantor in the
birational classification of linear systems of algebraic curves (see [26,37, Theorem 7.4]),
which like [26.27], became known to the author due to discussions with M.Kh. Gizatullin,
V.A. Iskovskikh and A.N. Tyurin, when this paper was finished.

In the subsequent paper, part I1 of this paper, we obtain, within this method, all integrable
quadratic reversible mappings with a zero fixed point and with invariants generated by
invariant cubics and study their dynamics. In the next paper we will consider the local and
global integrability and non-integrability of the known cubic polynomial Moser mapping
[641 in the framework of our approach.
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2. Formulation of the problem

Let z = (z1, 22, z3) be a point of projective plane CP? and mapping ®,, : CP? - CP?
Dyiz> 7 =21 125:25 =01 : 2(2) 1 $3(2)

is a birational one (inverse mapping is also rational), where ¢; (z) are homogeneous poly-
nomials of degree n in z.

Let us introduce x € CZ, x; = z; /z3,i = (1, 2) and consider an autonomous dynamical
system in C? with discrete time

@i (x1(n), x2(n), 1)

¢3(x1(n), x2(n), 1)’
and a system of autonomous functional equations for meromorphic functions x; (w), x €
ClweC,i=(,2)

¢i (x1(w), x2(w), 1)

$3(x1(w), x2(w), 1)’
Let us call the systems (1) and (2) algebraically integrable if there exists a mapping

C? — C defined by a ratio I,,(x) = g, (x)/h,(x) of two polynomials of degree 1, which
is invariant with respect to the changen > n+1lorw — w + 1:

xin+1) = i=(1,2), (1)

xi(w+1)= i=(1,2). 2

Ix(n+ 1) = 1, (x(n)), Io(x(w+ 1) =1, (x(w)).
Then the equations
I,(x(n)) =cy, ¢ = const, I,(x(w)) =a(w), ow+1)=ca(w), 3)

defining the level lines of first integral or invariant of dynamical systems (1) and (2}, give
one-parameter family or pencil of algebraic curves of degree u due to a rationality 1, (x).
Since algebraic curves of genus g are parametrized by rational substitutions at g = 0, the
elliptic functions at g = 1 and the theta-functions of genus g at g > 2 that, thus, we obtain
general solutions of systems (1) and (2) in the form

xi(n) = Fi(n + c2, 1), xi(w) = Fi(w + B(w), a(w)),

where B (w) is an another arbitrary function in w with a period equal to 1, but the constant c;
defines a point of reference on the level line (3). In [4—7] we investigated some non-algebraic
integrable quadratic birational functional equations of the form (2) with a holomorphic
invariant [, (x).

Below we are intended to find the conditions of existence of a rational invariants of
birational mappings in CP? and to present the method of obtaining them.

3. Some facts from the theory of birational mappings

Cremona mappings are birational self-maps of the n-dimensional projective space kP"
over field k, for n > 2, their systematic study in the case n = 2 and k = C was began by the
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Italian geometer M. Cremona in the second half of the 19th century. From the algebraic point
of view, a Cremona map is a k-automorphism of the rational function field k(zy. z2. ..., 2,)
in n variables, for some n > 2. 2

The main tool for studying birational mappings is the technique of linear systems with
assigned base conditions in dimension 2; the most complete modern treatment of them is
presented in monograph [22]. Below we shall follow monograph [24] (see also [21-23.25—
27)).

Definition-Theorem 1. Letz = (z). z2. z3) be a point of projective plane CP2. A mapping
@, : CP? - CP?

@iz =215 =012 2(2) 1 P3(2), (4)

where ¢; are homogeneous polynomialsin z, i = (1. 2, 3}, of degree n, is called a birational
mapping if it assigns one-to-one correspondence between z and 7', while the inverse mapping
is given by

& =i = 1) ) 1 (). (5)
and is also rational, ¢! being also homogeneous polynomials in z’, moreover. ¢; and ¢, have
no common factors. Associated with @, is the linear system ¢ = c1¢| + ca¢ + c3¢3 (for
¢; € C). One-to-one correspondence for direct @, and inverse @, I mappings is not fulfilled
only at indeterminacy or fundamental points O, € O, 0}3 cO, a.8=(.,2..., o).
i.e., common zeros of multiplicities 7y, i}} for functions ¢y (z), ¢, (z). k = (1.2,3). and
the associated linear systems ¢, ¢’ (below we suppose without loss of generality that the
coordinate z3 of Oy and 023 are not equal to zero)

3z
——[—ﬂi——)— =0 forl=0.1,2,..., ig—1., 0<m<l,
8z, "oz
&.l 4.2 Oa
3l (z ,
ﬁ =0 forl=0.1.2.....is — 1. 0<m =<1l
A=y _m
d"‘l ()4,2 o'
f
and on principal or exceptional curves J,, Jé, a,B=(1.2,...,0),

L @=0, SE@ii@=0. «p=0.2...0).
where jy, j é are homogeneous polynomials in z of degrees iy. i ;3 respectively, moreover,
points Oy. Oy blow up into curves J,. Jp of degrees iy, iy and curves Jq. Jg blow down
into points O, Og, respectively (see the concept of a-process of blowing up of singularities
in the theory of ordinary differential equations [66] and the Kodaira theorem in the algebraic
geometry [23]). The multiplicity of a fundamental point is the multiplicity at this point of a

2 From a modern Foreword [25] to monograph [24] by V.A. Iskovskikh and M. Reid in connection with a
new edition of the book planned in the future.
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general curve ¢. In special cases tangency conditions of any two members of the associated
linear system are expressed as multiplicities of infinitely near points [25], or adjoint points
in the therminology of the Hudson book. The Jacobian J of the mapping @, equals

[eg

=T e

a=l

b

The determination of the Jacobian is a very simple way to find the principal curves. The
principal curves Jy (J l;) intersect each other only in fundamental points Oy (O},).
If we substitute z from (5) into (4), we obtain the identity

2y 1557 =018'(2) 1 2(9'(2)) : ¢3(9'(2)),
and there is a factor of proportionality

G = w foralli € (1,2, 3),
4

where G’(z) is a homogeneous polynomial in z’ of degree n? — 1.
Linear combinations of the functions ¢;, ¢!

¢ =c1¢1 + a2 + 3¢, ¢’ = 19 + chy + 35

define the first and second rational nets which are the images of nets of lines. The curves
¢ = 0, ¢’ = 0 are rational (of genus g = 0).

Remark 1. Note that for a polynomial mapping the functions ¢3(z), ¢3(z) are identically
equal to z5 (see, for example, the known Moser cubic mapping [64]).

Remark 2. The transition from CP? to C? is given by the change z — x, x € C2, x; =
zi/z3,i € (1,2), and x{ = ¢ (x23, 23)/P3(x23, 23).

Remark 3. The set of numbers n; iy, i2,...,i5, {1 > ip > --- > i,, where i, are the
multiplicities of all the F-points of @,, including infinitely near ones , is called the charac-
teristic of mapping @,. The general mapping with a given characteristic depends on 20 + 8
parameters. If the characteristic of the inverse mapping is the same, then this characteristic
is called self-conjugate; otherwise, it is called conjugate. For n general, there are always at
least two self-conjugate characteristics. There are the following inequalities for n > 2 (the
latest one is the Noether inequality):

c<2n—-1, i1+ir<n, i1+i+i3=2n+l
All characteristics up ton = 17 are in [24]. Atn = 3 and n = 4 they are

n=3 321111, n=4 43 1,1,1,1,1,1, 4:2,2,2,1,1,1.
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Remark 4. Letz o, De the multiplicity of curve J,, at point O} p and igg be that of curve Jg
at OD, Then we have the equality ipg = ﬂ and the following relations between numbers

;o l L avmmaccing rartain annmanteian]l fFante forrmamaime 1 tha laft ~Anliienin Avrae A amd 101
Loy s lﬂ l(lﬂ C)\PICDSIIIE LCl ldlll 5CUIllClllLdl ldl,l\ \bullllllllls lll tne 11t Co1uimn over ¢ ana in

the right one over § from 1 to o):
D i =301, D i =3m—1, (6)
Y iZ=nto, it =nt 1, (7)
> iag =3y — 1. > g = 3ia — 1. (8)
Y ialag = ign. Y igiap = ian. (9)
g =ig + 1, Y gy =i+ 1. (10)
D lapiay =igi, (BFY)N D iapiys =ialy (@ FY). (1)

Remark 5. Consider properties of a general curve f,(z") = 0 of degree y under the
mapping (4). By map (4), the curve f,(z') is mapped into curve f,(¢(z)) = fl;,(:j) of
degree u' = un. moreover, every point O, which is i,-fold on ¢ (z) is pi,-fold on )‘//I If
f;(z") has multiplicities y4 at points Op. then (deg(jg) = iy)

g ’ g

. ’ ! ‘y ’ 7.t

fuh = fa@ [T W == vig. (12)
=1 =

moreover, f/; has multiplicities y, at Oy (see the meaning of iy in Remark 4):

a

Va:/lia_ziaﬁy/,}- (13)
B=1

Remark 6. LetR =) %pl,(pv - 1) be the reduction of genus of a linear family of curves
{ i} duetoallits oy p,-fold points S, € Sotherthanits o3 < o y,-fold points from O: these
are mapped onto the multiple points S5 of linear family {f;/u} other than O, reducing the
genus of f‘; by R also; let ¢ be apparent freedom of curves { f, }, that is, the one calculated
under the assumption that all the base points impose independent conditions on { f}, }:

aj a2

1 1 1
g=suu+3) =Y Spuloe+ D= S¥alya+ . (14)

v=] a=I

then the relation

| 1
=5 =D =2 =3 Srelva =) =R

1 14 ’ l I /
=50 = D' =2 =3 oy =D - R (15

expresses the invariance of genus p of curves f,.
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Definition-Theorem 2. The set of fixed points {D;} of mapping &, (4) is defined as the
intersection of two (n + 1)-ics (the conic = the 2-ic, the cubic = the 3-ic, and so on)

fi =93 — 2301, fo =203 — 3¢

The intersections of those which are not invariant are the F-points O, and the n inter-
sections of z3 and ¢3. In general, therefore, the number of isolated points Dy is n + 2. If the
two (n + 1)-ics have a common part, consisting of fixed points only, and there is the fixed
(invariant) curve, say A, of degree u < %(n + 1), then the number of isolated fixed points
is reduced. There are simple fixed points at a simple intersection f|, f>, simple fixed points
of s-point contact and i-fold points.

Theorem 1 (M. Noether). Every Cremona plane mapping can be resolved into quadratic
mappings.

Remark 7. The procedure of resolution of mapping &, — @, o@; into two simpler
components @,’, @3 is not unique since any @, can be replaced by two others having two
F-points in common; hence any set of @; is equivalent to an infinite number of other sets.
However, the normal resolution is unique and it is defined by the choice of three F-points
of @, being common with three F-points (top trio of maximal multiplicities iy, i2, i3) of
mapping @,,. Then n’ is equal to 2rn — i| — i3 — i3 < n due to the Noether inequality (see
Remark 3). After a series of such resolutions n’ will be equal to 2 and resolution is complete.
It is obvious that @; cannot be resolved in @j. Let us note that, if the top trio is on direct
line, then the Noether method fails, but J.W. Alexander corrected the Noether theorem [26]
in this case.

Remark 8. Any generic quadratic Cremona mapping is generated by a composition

@, =B 'oL0By, (16)
where

B:z+— j =Bz, By:z— j=Bz a7n

are general linear mappings from the PGL(2, C) group and /; is the involutive standard Cre-
mona mapping with three simple F-points in (1,0,0), (0,1,0) and (0,0,1) and three principal
lines J, = {(z; = 0).(z2 = 0), (z3 = 0O)}:

Lz =212 d=nn: a5 un. (18)
In the triangular frame of reference (17) mapping (16) takes a very simple form
P2 j@ e j(@)=j1@) : jp @) s j5ED
= j2(2)j3(2) : j1(@) j3(2) : j1(2) j2(2)- (19)

The mapping - is specialized if two or three F-points are adjacent or infinitely near [25]
and has, respectively, the following forms:



K.V. Rerikh/Journal of Geometry and Physics 24 (1998) 265-290 273

@, = B~ 'ol,0B), I iz 7 =2 L2123, (20)

' (3 —21z3), 2D

!
1
d>2bEB_‘oIboBl, Iy 2+ 2 =Z/l:~

ISR
o~
™~ 2y
i~ o~
o
~ ~
—t9 2t
M M
N
[SS I )

moreover, involutions /,, I, from (20) and (21) can be resolved as a composition of two or
four, but not fewer, general mappings (16), respectively. Any two members of the net (20)
touch one another and have a fixed common tangent j; = z; = 0, but ones of the net (21)
have fixed common tangent j; = z; and osculate a fixed conic :% — z123. These tangency
conditions are simulated by two or three infinitely near points, so as Eqgs. (6)—(10) remain
correct.

4. Main theorems of algebraic integrability of birational plane maps
From Remarks 5 and 6 the following theorem follows.

Theorem 2. For a plane curve f,(z) = 0 of degree u and genus p, defined by formula
(15), the following two conditions are equivalent: (A) f,(z) = 0 is invariant under the
mappings @, (4) of characteristic n; iy, ..., i; (see Remarks 3 and 4) and @7 (5); (B)
fu(2) is a solution of the following functional equations (see (12)—(15) in Remarks 5
and 6)

fa@@) =lelsgn(@ £ [T 4. 3 vhiy=ntn—1. 22)
B=1 B=1
fu@' @ =lel " sgn(@ fu [T i Y Vale = utn — 1), (23)
a=1 a=1

where Oy, 0;, are yy-fold and yt; -fold points of the curve f,(z) = 0, and multiplicities v,
and y'[, satisfy the equation

o
Vo = Mg ~ Z iaﬁ)’t/} 24)
B=1

(about iy, igg see Definition-Theorem 1 and Remark 4), while sgn(e) = £1 and number €
is a constant.

The number q of free parameters of the curve f,,(z) = 0 before the substitution into the
Sunctional equations (22)—(23) is given by formula (14) (see Remark 6). If g equals | then
we shall obtain an invariant pencil, at ¢ = 2 or 3 we shall find an invariant net or web.

Letus give a definition of an integrability or algebraic integrability of the mapping @, (4).

Definition 1. The mapping @, (4) is integrable or algebraically integrable if there exists
an invariant rational function of z

1(2) = g, (2)/ hyu(2), L (¢(2)) = 1.(2),
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moreover, equation /,, (z) = ¢ = const defines the level lines of the first integral or invariant

1,,(z). Note that this definition is equivalent to the existence of invariant one-parameter
nnnnnnnnnnnnnnnn

(23) moreover, the homogeneous polynomials of degree i g,,(z), h, (z) are any two linear

independent solutions of Eqs. (22) and (23) with the same set y,, yf’,.

Definition 2. The orbit O, of a point z with respect to the mapping @, ' (5) is the set of
points Ok = d)n_"(z) = (tbn“])k(z), k € ZT, where ZT is the set of non-negative integers.

The orbit ¢, of a point z with respect to @, (4) is defined analogously, 0% = ¢k(z) =
3 p p z n

(@)%(2) and PX(2) & D, (@, (- (1) ). 0% (@) B @ (@ (2) - )(see, for

example, [66,68,74]).

Definition 3. If the number k of points of the orbit O, of a point z with respect to the
mapping @' (5) is finite where & is defined by the condition

Of=o )=z ke,

then the periodic points (@, 7(z)), m = (0, 1,...,k — 1), form a cycie of index k or
period k of the mapping <D,,_' (2), but z is a fixed point of the mapping ¢,”—k (z). A cycle of
index k of the mapping ®,(z) (4) is defined similarly with the changes: O. +— (’. and

ma m.

@, " (z) = @, (2) (see [68]). The number 7, of cyclic sets of order m = p{'' py' - p;
is given by the Kantor formula [26]:

I m m/p; m/pip;
_ _ (S pipj (=1 m/ppa /J‘.) 25
Tm = (n E n E n (—D'n (25)

Definition-Theorem 3. Let &, (4) be amapping of characteristicn; iy, is, ..., iy and CD,,_I
(5) be the inverse mapping (see Definition-Theorem 1, Remark 3). Define the decomposition
of the sets O, O’ of fundamental points O, 0"9 of these mappings as follows:

0 = 09 y otint O(inf)~ o = O/(cyC) U O/(int) U Ol(inf)_ (26)

Here 0D is the subset of fundamental points O, with infinite orbits, () the subset of
fundamental points O, having cyclic orbits O, z € O, of index m or cyclic orbits with
tail, i.e. O™ = O™ = z,x,z € O, x # z, and O™ is the subset of fundamental points
O, whose orbits (’)f, Z = O, € O, intersect the set O’ and finish for some k = kap by
points Oé, (O = 0,’S at kg = 0).

Introduce numbers N as numbers of intersections of the set Of) of orbits OX, z € Q)
with the set O’ (see Definition 2):

Ni = #(OF iy, NO'), 7

(int)

where #A denotes the number of points of the set A. The decomposition of the set O’ with
respect to the action of the mapping @, is entirely analogous. It is obvious that



K.V. Rerikh/ Journal of Geometry and Physics 24 (1998) 265-290 275

) N = #()(i“” = #O/(im).
k=Kmin

Definition-Remark 1. Armold [43,44] introduced and investigated such characteristic of a
dynamical system as the topological complexitv of the intersection of a submanifold, moved
by a dynamical system, with a given submanifold of the phase space. In the simplest case tor
plane mappings @ the complexity C/‘f (k) can be defined [45] as the number of intersection
points of a fixed curve [ with the image of another curve I'> under the kth iteration of @:

Cf;nrg(k) =#(I" N @ (M)).

If the mapping @ is a birational one in BirCP- and the curves Iy, I are algebraic curves

in CP?, then it is easy to see that the growth of C,(f; ron (k) will in general be as follows:

Ch 1y (k) = deg(I'))deg(I2)do (k) < deg(I')deg(In)(deg®)".

where dg (k) = deg(®F) is the degree of the mapping &, which agrees well with general
Arnold’s results for smooth mappings and diffeomorphisms [43.44].

Theorem 3. Let d(k) be the degree of the mapping CD,’j , the kth iteration of the mapping
@, (4), the number of points of the set O be no less than zero, #0'™ > 0, and
Ve (k). yr;(k) be the multiplicities of the curves ¢;k)(:) =0,1i = (1,2, 3), at fundamental
points of the direct mapping (4) Oy and the inverse one (5) O;,. Then the dvnamics of the
mapping @, (4), 03};'. k € ZT, of characteristicn: iy, is. .. .. iy (see Definition-Theorenm 1,
Remarks 3 and 4) is completely determined by the following formulae:

of i, =0 el e (). (28)
oM (=0 0F® (oo )R =10 Mg ), (29)
dtky =ndk — 1) =D igyytk —1). (30)
)/a(k):d(k—l)ia—Ziaﬂyf;(k—l). (31

moreover,

diOy =1, d)=n. y(D)=iy. Yotk)=0 for k <0.

Vpk) = Yalk —map) foralla. p 3
that

(p;’"aﬂ(oa) = 0};‘ O, € O(inl)_ 0;‘ e O/(im)‘ (33)
and, according to (32) and (33),

yf/,(k) =0 for k <mgp. yf',(m(,ﬁ + 1) =iq. (34)

Proof. Letus prove the theorem by induction method. Let us consider the kth iteration of the
mapping @, (4) as a transformation of the curves ¢>,-(k7 Diy=0 by the action of the mapping
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@, (4). Let the numbers y, (k — 1), vo (k — 1 —1),1 =1, ..., myg, be the multiplicities of
*=D(2) = 0 at the points (Oq, [®5(0x)] € Op,, 1 =1, ..., mup) and let
" (0,) = Oy, where we indicate explicitly only the points O € 0™, 0y € o/,
The existence of other points O, € 0¥, 0, € 00D (see Definition-Theorem 3) is not
essential for the growth of d(k), although their multiplicities are also defined by (30) and
(31) only with other conditions <D,5_r“")(00,) = Op for Oy, Op € OV, 1 = 1,..., ryp,
and for O, € QW) 1 =1, ..., k—1,in (29) and (33).
Then, according to Remark 5 and Egs. (12) and (13), we have

the curves ¢

_ T vk=1)
o =M [0 @
p=1

and obtain formulae (30) and (31).
Now prove the equalities (29)—(31) for k = 1. Indeed, d(1) = n, Y, (1) = iy, therefore
ylg (0) = 0 and the proof is completed. O

Now we can state a general proposition about the necessary and sufficient conditions of
algebraic integrability of @, (4) (see Definition 1).

Theorem 4. Let @, (4) be a mapping of characteristic n; iy, iz, ..., 1, Q)n_l (5) be the
inverse mapping of characteristic n; i, 1), ..., i, and igg be the multiplicities of curve Jg
at Oy (see Definition-Theorem | and Remark 3). Accomplish the decomposition of the sets
O, O’ of fundamental points Oy, 0,’3 with respect to the action of mappings @, Uand o,
(see Definition-Theorem 3).

Then, if the mapping ®, (4) is algebraically integrable and 1,(z) Is its invariant (see
Definition 1), the set S = (g,(2) = 0) N (hy(z) = 0) of /1.2 (due to the Bezu theorem)
indeterminacy points of multiplicities {yy, yé, pv} € the set I of the invariant 1,,(z) admits
the following decomposition:

S = S(cyc) U S(int) U S/(cyc) U S/(int) U S’ (35)

§ = §@o y§lin | §reve | §rievo, (36)
where

steye) - gleye §lnt) O(im), §/(eyey « /leye) g/(int) — @tint) (37

g(Cyc) = Os(cyc)\S(Cyc), S(im) = Os(im)\s(im) = O/S/(im)\sl(im),

§/leve) = O/S/(cyc)\S/(CYC), §eyo) . OS//(cyc) = S//(C)’C)’ (38)

where the expression A\ B means a set A without a set B, moreover, the set SU™) corresponds
10 the set 8™ as the set 0" corresponds to the set O'™ and #8000 — #8700 pyy

p? = #8@9) 4 48/ | ougliny 4 4G (39)
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The sets of multiplicities vy, }'/; correspond to the indeterminacy points from the subsets
steye) y§tiny §/€¥e) G g0 ps the one Py corresponds to the indeterminacy points from
the subset S.

For the mapping @, (4) being integrable and having first integral or invariant 1,,(z) =
8u(2)/ hyu(z), which is equivalent to the existence of a one-parameter family or pencil
of invariant curves f,(2) = agu(z) + bh,(2) of degree p. the following conditions are
necessary and sufficient:

(1) #OUMy £, (40)
(2) there exists non-trivial set of integers: degree of invariant . and a set of the multiplicities
Yo yf; satisfying the following equations:

a a a
Dovhip=a =10 D yela = un = ). ya = pic = Y lapype (41
B=1 a=1 p=I

and
a o a o
Yvh=Y ve Y VE = e (42)
p=I a=I p=1 a=1

(3) the dimension r of linear system of invariant curves f,(z) with the set S of the basis
points determined above by (35)—(39), (41), (42) and multiplicities y,. yf; determined
by (41) and (42) is not less than one, r > |, and defined as a number of linearlv
independent solutions of the functional equations (22) and (23), reduced by one, and
moreover, if their number is equal to r + 1 then the number of invariants 1,(2) equals
r and r — | of them depend algebraically on the remaining invariant.

Note that conditions (1) and (2) are necessary but the one (3) is sufficient, moreover.

condition (2) completely defines the set S not defined completely by conditions (35)-(39).

If conditions (1)-(3) are fulfilled, then the mapping ®,, (4) is integrable and the invariant

1,(2) is of the form 1,(2) = g,(2)/ h,(2) for functions g, h, being a linear independent

solutions of the functional equations (22) and (23) with the same signature sgn(e) and of

the form 1,,(2) = [gu (z)/hﬂ(z)]zfor the case of different sgn(¢) (see Theorem 2).

The genus p of the pencil of invariant curves f, and the number q of free parameters of
fu(2) before solving the functional equations (22) and (23) are determined by the formulae

1 i L, |
P=5= D=2 =) syelve =1 =Y Svplrp =1 =3 spulpe = D
(43)

1 1 I, !
q = Eﬂ(ﬂ +3) - Z Eya(ya + 1) — Zzyﬁ()’ﬁ +1) - Z Epv(/)v + 1. (44)

Proof.  We will look for the first integral or invariant of degree u 1, (z) = £,(2)/ h, (D)
of the mapping @, (4) of some characteristic (see Remarks 3 and 4). This means that we
have a linear family of curves of degree u, genus p and freedom ¢ = | (see Remark 6).
that is a pencil of curves f,(z) = ag,(2) + bh,(z) which are invariant under mappings
&, (4)and dbn_l (5) and, consequently, are solutions of Egs. (22) and (23). This means also
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that there is a set of multiplicities I def {(Va. yf;, pu} of the curve f,,(z) = 0 at F-points

0u €09 U0, 0 € 0¥ U O’'"™ and at other indeterminacy points of nvariant
1(z) (py), satisfying Egs. (41) and (42).

Eqgs. (42) are consequences of the last equation of (41). In fact, summing the third equation
of (22) over a we obtain the first equation of (42) (see Remark 4 and Egs. (6) and (8)),
but squaring the third equation of (41), then summing over « and using (7), (9)—~(11) and
the first equation of (41) we obtain the second equation of (42). Thus, the sets of those
F-points O,. Oy, for which multiplicities yy, y are not zero, are the sets §‘“, S0 and
S/(cyc)’ S/(inl).

Since the points Oy (0}’3) are not indeterminacy ones of the mapping Cbn_l (2) (5) (P, (2)
(4)), itis necessary that the orbits O, ((’)’0//1 ) of these points Oy (0;,) are composed without

the initial points of the common indeterminacy point sets S(¥¢) §(in0 §e¥e) jn (36) (see

(35)—(38)). Let the number N of points of the set S\S//(Cyc) be smaller than p>:

N = #8\8" Y < 2.
Then find the number of such cycles of the mapping @,(z) (4), other than cycles
S©v) §Y9 for which the total number of points of the set §”Y¢, as the union of these
cycles, equals

#S//(cyc) — ,LL2 —N.

Condition (40) is necessary for integrability since otherwise the Arnold complexity, coin-
ciding with degree d(k) of the kth iteration of the mapping @,(z) (4), will grow as n* (see
Definition-Remark 1 and Theorem 3). This growth corresponds to a generic mapping which
is obviously not integrable. Thus we obtain a pencil of the p-ics with the total number of
free parameters (freedom) ¢ and the genus p determined by Eqgs. (44) and (43).

Due to a possible existence of some symmetry in the sets of points Oy, 0;, € S, the
actual number of free parameters ¢,c« may be larger than the number given by Eq. (44). The
substitution of the family of curves of degree u thus obtained into functional equations (22)
and (23) gives a set of r + 1 linearly independent solutions of Eqs. (22) and (23) and r first
integrals or invariants of the mapping under consideration. O

Two remarks follow.

Remark 9. It is obvious that, if the mapping @,(z) (4) has an invariant /,, then it has
an infinite number of algebraic invariants of the form 1;/1’ = R(l,), where R is a rational
function of [, moreover, all invariants depend algebraically on one of them. However, the
minimal invariant is unique up to a linear-fractional change.

Remark 10. Itis obvious that if we have found an integrable mapping @ : 7’ = ®(z) and
its minimal invariant /., 1,,(®(z)) = I, (z), then we have an infinite number of integrable
mappings ¢’ : 7’ = ¥ o@ oW (z) of birationally equivalent to the initial one and their
invariants are I,/ (z) = I, 0¥ (2).
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The following theorem presents, as a corollary of Theorem 4, the method of generating
integrable plane birational mappings.

Theorem 5. Let us have a mapping in group BirCP? of characteristic n: iy. . . .. i, sat-
isfving Eqgs. (6)—(11), with generic F-points O. 0//,. Then the following recipe generates
integrable mappings:

(1) Let us set oy + o2 conditions of the following forms:

and analogous conditions with the change O < O’. Mg Fap. 02 < —(Map, rl’xﬁ). 0.
(2) Let us set oz conditions of the form

HMoy=z. 240.0 (47)

and let us have the sets of cveles Cri(zy. . ... 2) - - - Coi (vt ko )- The remain-
ing o —a 1 —o3 points of the set O and o — o — o points of the set O belong 10 O™ and
0" Then we shall form the sets S<¥) §UnD §/(eye) 0 G yecording 1o (35)— (38)
and construct a pencil of curves of degree u, satisfving Egs. (39)—(42). The substitution
of the general curve of the pencil of curves f,,(2) = ag(z)+bh, () into the functional
equations (22) and (23) with subsequent determination of free parameters guarantees
that we have generated an integrable mapping of the characteristic under consideration
with r invariants 1,,(2) of the form 1,(z) = g,(2)/ h, () for functions g, h, being
solutions with the same signature sgn(e) and of the form 1,,(z) = [g,(2)/ h,, () for
the case of different sgn(€) (see Theorem 2).

5. Integrable birational quadratic plane reversible mappings with zero fixed point
and their invariants, generated by invariant lines and conics

Let us give a definition of reversible mapping.

Definition 4. Let X be an arbitrary set. A one-to-one mapping 7 : X — X is said to be
reversible if there exists another mapping G : X — X for which 77! = GoT oG and G is
an involution: G = id [3,51.53].

These conditions imply that 7 o G is also an involution and T = (T oG)oG is the
composition of two involutions. Conversely, the composition of any two involutions is
reversible with respect to each of them.

To demonstrate applications of Theorems 4 and 5 for our approach, we will generate
all nine integrable birational quadratic plane reversible mappings with a zero fixed point
and their invariants generated by invariant lines (see Appendix A: IV and V) and invariant
conics (see Appendix A: I-1II, VI-1X). The characteristics of these mappings such as the
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Table |
Basic characteristics of nine integrable birational quadratic mappings (see Appendix A) with zero fixed points

N o o7f0r k o7f0s &k of0, k5 No Ny dm) Niny
1 0 0 0 0 o 1 -1 2 1 2 2 1
n o 0 o] 0 0 0 +L+L.—-1 3 0 lor2 1,24 3
m 0, 0 0 0 e otnh ~1 20 2 4 1
v2 0 1 0] 0 O 1 41 I 0 m4+1 1,2 2
Va0, 10 0 0 1 —1.+1 I 0 m4+1 2.2 2
VI 0] 0 0 1 e otind) —1 1 1 m+1 4 1
vl 0] 0 0, 1 e otnD -1 1 1 m+1 4 1
VIl 0] 1 0, 1 eolinh —1 0 2 2m 4 1
X 0 10 1 0, 1+l 0 2 2m 2 1

Ny = #(¢>2_k0) no’'. db? = id, k = 0. 1, uy is the degree of the invariant, the value 3, equals: §, =
sgn(eg)/sgn(en).
2 A mapping generated by invariant straight lines, Njp, is the number of minimal invariants, and N is the
number of the mapping in Appendix A.

Table 2
Relations between parameters in the matrix B (58)
N 1 2 3
I p=0 p2= 92 =q3
Il Py =—p| = g3 =41
il p2=0 g2 =4q;
v p2=-p 92 =4
v p1=0 p2=0
Vi p3=3p p2=-pi 43 = 42
VII p2=pi p3=-3p 93 =q2
VIII P2 =p; q2=43"
IX p3 =P p2=-pi g2 =q;*"

4% = (@ip3+a3p))/(p3 + p1). Py = —(p1 + p3)/2.43* = [—q1p1(p1 + 3p3)+43p33p1 + p3)]/
(P2 = ph. g3 = (q1 +93)/2. ‘

degree d (k) of dynamics of mapping ¢§ related to the Arnold complexity and the introduced
numbers Ny of intersections of orbits Ogm With the set O’ being the sublevels of the
complexity are listed in Table 1 and the relations between the parameters of the mapping
appearing from the necessary conditions for integrability of the mapping under consideration
are presented in Table 2. First of all make some general comments on quadratic mappings.
Consider a general quadratic mapping j(z) — j'(z'), z, z € CP? in the triangular basis
(see Remark 8) with pairwise distinct F-points O, 023 (the case of two or three adjacent
F-points is not essential for our approach and we will consider this case elsewhere):

P j(@) e @)= 1) ) 3D
= j2()j3(2) : 12 J3(@) : j1(2)j2(2), (48)

where j’ and j are defined by linear mappings B and B:
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Bz~ j =Bz, By :z+— j =Bz (49)

Consider a general quadratic reversible mapping with involutive symmetry between the sets
0. O', namely

B, = BS, S=CAC™', S?=id. A=diag(£l). (50)
where
Pro4q1
B=|p g nr (51
P 43 I3

and C is the fundamental matrix [76] for the involutive matrix S.
Substitute 7 — u = C~ !z into (50) and (49):
j = Bsu. j = BsAu, Bs = BC, (52)
where
A Ay = diag(—1,1,1), Ar =diag(l, —1,1),
Az = diag(—1,—1.1), Ag =diag(1,1, 1),

where A4 defines the involution (see (48)—(53)). The case of a mapping with A4 is not inter-
esting and we shall not consider it. Mappings with A> and A3 are reduced by a substitution
to a mapping with A = Aj.

Indeed, make substitutions # — v = Pau, P22 =id.andu — v =1 Pau. Pf =id,
where 1 is the imaginary unit.

Then

j/:vii. j = B2Ayv, B> = BP>. Ar = PryA1 Pa, (54)
j'=B3u.  j = BiAav, B3 = BPs, A3 = —Pi AP (55)

where the matrices P>, Py are defined by
010 0 0 1
Pp=]1 0 0], Ps=10 1 0]. (56)
0 0 1 1 0 0

Now we can make the following remark.

Remark 11. We will consider below the general quadratic mapping defined by (48), (49)
and (50) with the matrices C = id and A = A| remembering that we can always perform
the changes mentioned above in integrable mappings obtained and to extend future results
onto these cases.

It is clear that by no transformation z — u = Dz one can satisfy the equation BD =B

j = BDz, j=BD(MD'AD)z; = BD Az, D'AD = A, (57)
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where
B pt oq1 1
B=|p2 ¢2 1]. (58)
p3 g3 1

The general case r; 2 1 Vi is to be considered separately. For simplicity we will consider
below mappings with a zero fixed point, which implies B = B.

So, we have three principal lines J;. J; and three F-points O;. O;, O; = (j; = )Nk =
0., x=z1, y=0. 1=23. A= Ay),

Jji=—pix+qy-+z, J',‘,“—’Pix +4iy+z, i€ (1.2,3), (59)

Oi ={q; — qk. Pj — Pk+ Pkqj — Pjqk}s
i#j#k i, j,ke(1,2,3), O =AO0;. (60)

Find all integrable mappings and minimal invariants generated by invariant lines and conics.
Then u? equals | or 4 and we have to construct the set S of singular points of invariant /.
According to Theorems 4 and 5, Definition-Theorem 1 and Remark 4 for n = 2 we obtain
that all the points Oy, 0/’3 are simple and

ia:i;S:I, iaﬂZ] for @ # B, iwa =0,
3 3 3
Sr-a Tnen w2 Y

(For invariant lines we should replace 2 with | in these equations.) Since an irreducible
conic cannot have a 2-fold point Oy, O%, we have only two numbers y,, yf; for conics and
only one number for lines (say, y; and y3, y| and y3’ for conics and say, y3 and y3’ for lines)
which are other than zero and equal to 1.

Set a decomposition of the sets O, O and consider the following conditions according
to Theorems 4 and 5:

o;*0i =0,  ®;%0; =0/ i.je.3), k=0.1, 61)
;50 =0/, %0, =0} (i#j)e.3). k=01 (62)

Then solving these equations for general values O;, 0; determined by (60) and using the
equations

S N N T [ 1 [ 19 (63)
70N = pilgj —q) +qi(pj — po) + prdgj — pigr. i #J# ko 1€(1,2,3),
(64)

we obtain the relations between the parameters in the matrix B (58) for all integrable
quadratic mappings with invariants generated by invariant lines and conics (see Table 2).
Substituting the following general forms for invariant curves f1(j(z)), f2(j(2)):

NG @) =aji + bj2, £0(@) = aji jo + bji js + cajz + dj3. (65)
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into the equation for invariant curve (22) and requiring the existence of at least two linear
independent solutions of this equation we have found all integrable mappings and invariants
I, (see Appendix A: I-IX). Using Eqgs. (28)—(34) from Theorem 3 we obtain the growth
d(k) for the degrees of integrable mappings ¢§(:) (see Table 1 and Appendix A. items
I-IX). Note that the mapping I follows from mapping V at g3 = ¢.

6. Conclusion

As we can see from Table 1, the dynamics of an integrable mapping is determined by the
numbers k = kmin and N, which are the index and number of intersections of the orbits.
In the sequel to this paper we will obtain by this method all integrable quadratic reversible
mappings with invariants generated by invariant cubics, and will study their dynamics. In
another paper we will consider the local and global integrability and non-integrability of
known cubic polynomial Moser’s mapping [64] in the framework of our approach. The
theorems of this paper give us a possibility to investigate new fields such as meromorphic
functions of the group BirCP?, the integrability of the Poincare resonant systems determined
by the birational mappings and others questions. It would be very interesting to analyse in
the framework of our approach various relations between the conditions of the local (see,
for example. the Bryuno conditions A2, A}, A{ in 9-11 [67. Theorems]) and global inte-
grability and non-integrability, between the (algebraic) integrability and the non-algebraic
one for birational (reversible) plane mappings.

As reversible mappings are qualitatively similar to symplectic mappings, it will be very
useful for this analysis to exploit the enormous experience gained in the integrable and non-
integrable Hamiltonian systems (see monographs [68—72]). It would also be very interesting
to modify our approach by using the powerful technique of the differential forms (see
monographs [73-75]) that [ intend to make in one of future papers.

Let us make some comments on the famous results in the birational classification of linear
systems of algebraic curves of genus p due to M. Noether, E. Bertini, G. Castelnuovo and
S. Kantor (see [26, Chap. 4; 37, Theorem 7.3])

Theorem 6 {37, Theorem 7.3].

(1) A curve of genus p = 0 is birationally equivalent to a line.

(2) Anelliptic curve (of genus p = 1) is birationally equivalent to a cubic without multiple
points.

(3) A hyperelliptic curve of genus p is birationally equivalent t0 a curve of degree p + 2
having a single p-fold point.

(4) A non-hyperelliptic curve of genus p > 3 is birationally equivalent to a normal non-
singular curve (without multiple points) of degree 2p — 2 in space CP"~ Y unambigu-
ously defined up to a projective transformation.

Then in case (1) because of the pencil of rational curves is reducible with the help of some
Cremona mapping to the pencil of lines the mapping @, (4) having an invariant pencil of
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rational curves is conjugate (in the Cremona group) to the Jonquiéres transformation (see
[24]) which maps a pencil of lines into a pencil of lines.

In case (2) it is enough due to the Bertini theorem [26] to receive an invariant pencils of
curves of degree 3r with nine r-fold basis points (the Halphen pencil), then the remaining
invariant pencils of high or other degrees and genus 1 are birationally equivalent to the
Halphen pencil. Note that in the frame of modern algebraic geometry the Halphen results
were repeated and supplemented in {77].

In case (3) the mapping @, (4) having invariant pencil of curves of genus p is birationally
equivalent to the Jonquieres involution [24-26] or a composition of such an involution with
a projective transformation.

In case (4) the mappings @, (4) having an invariant pencil of curves of genus p are
birationally equivalent (see [37]) to the involutions of finite order (periodic transformations
of finite order) (see papers of Kantor [28-31], paper of Wiman [34] on finite subgroups in
the Cremona group and [26, Chap. 4] about these results).

In the end we should like to point on possible applications of our results and the Kantor
and Wiman results for the involutions of finite order to an investigation the k- reversible
(birational) mappings (see [61-63]).
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Appendix A

' x(qiy+1) p y
x' = , y=—— (A.D)
(1 = p3x + gay)[1 + (q1 + g2)y] 1+ (g1 +4g2)y

y2

I = .
(g1 +q2)y + 217

(A2)

It

2
X' =x(qay + YD, y = <——y— Py xz_q1y2> D!,
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qip}
—1+(Q2+2¢1|)v+ l] X2+ (g2 + gDy’
|
;o dyt] ; (611.V+1)2—P12X2+(612,\‘+1)2
I:: . 2:
x gy +D
g1y + D* = pix? — (q2y + D* | , y
]2 — - =17 —4(% — p?).
! [ x(q2y + 1) y=hLosli= o
11
_ 41P3 + 43P
p2=0, =
P33+ pi
, + - 43
Y= ( L Y T @l_fw\) p1.
2 2(p3 + p1)

2_ .2
V=|-v+ Py — P3 2 (II+(13 2 bt
2(q1 — ¢3) 2
(p3g1 — prga3)(p3 + p1) 2

D=1—(p3+pDx+(g2+qg1 +g3)yv+
2(q1 — ¢3)

1
—(p3q1 + p1g3)xy + 5[(13((12 +q1) +q1(g2 + g2

_ (G2 = )1 — J2)F
(P32 + )G — j2) + prUr + j2) G2 — j)]?

[((gr —a3)/(p3 + p1))? ¥> — x2]2

_ Hq1—¢3) , o (Q1=g3)gi+g3+292) .2 .
[(m px* + =Lty 4+ e ¥

:( 91— 43) _L)

(;3+pda g)°

<_ 491 — q3) _L)
(p3+re2 q)°

( q1-95  _ pi—p )
p3qi — pig3 p3qi — pirgz)

03

03

285

(A.3)

(A.d)

(A7)

(A.8)

(A.9)

Note that O3 = Oy, O] = O3. The invariant conic in the nominator of the expression for /
decays to two straight lines, transforming one to another by the mapping, and the denom-

inator is either an ellipse for k = (g1 — g3)(q1 + g3 +2q2)/[{p1 + p3){(p3 —

pl > 0,

or a hyperbola for k < 0, intersecting v-axisat y = O and y = —4/(q| + g3 + 2¢2). The

fixed pointis x = v = 0.
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v
2 2
_ ~p _
X =x(1-psx+q@yD™', V= <—.v I e - quz) D',
q1 — 43
(A.10)
2 2
q1{ps — pp
D =1-px+Q2q +q3)y+ —(113—(11~x2 +q1(q1 + g3y
.. ~q3 (A.11)
1 +
L=ty _ntano, N N
X 21 (1= J2)
\
, xt(@tg—g)xy+ ~—‘L—““““},§ ) g2 ) y
X = - L) V=",
(I = p3x +q3y) 1+ (g1 +q2)y] ’ 1+ (g1 +q2)y
(A.12)
SN2 2 1 1
I = (1'1 1.2)2 _ ¥ . b= (I +q1y)( +612,;)’ (A.13)
1+ J2) 2+ (g1 +g2)y] [2+ (g1 + g2)¥]
VI
, -1 / 4P12 2 2 -1
X=x(—-pix+qnD~, y=|-y- x4+ yprx —qay | DT
qr — g2
(A.14)
D=1-3px+ Qg2+ gDy = 2p1(q2 + qD)xy + g2(q1 + g2)y*
2pi(g) +
" Pilq 512)x2’ (A.15)
q1 — 42
. . . . N12 2 2.2 2
/= (1 + )2 — B3] _ Rpyx=+ (g1 —gq2)y(q2y + D] (A.16)
3j20j1t = j3) + i iz — J} [(q1 + g2)y + 2]°x? '
VII
x'=x(1 - pix +qy)D7", ¥y ==yl +3pi1x + @)D", (A.17)
D=1+ pix+(q1 +2q2)y +2pi(q1 +q2)xy + q2(q1 + g2)¥*%,
;_ BGL+ j+ Gijs + D1
[Gi = )2 — )P
—2pix? + 3 22
:Const[ pix-+ (g1 + qzz),;/+qz(41 +q2)y°] ’ (A.18)
Vex
VIII
__pntm 0 = —q1p1(p1 +3p3) +q3p3(3p1 + p3)
2 p; = pi

y

Y <x+ p3qi+ pigs o 2pips (43 —q1)° 2) .
p3+pi T patpi(ps—p)* ’
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, — +
v :<_.V+ (s — p)P3+pV) o o

p3+pi yx = BP3 T P14 y2> D!

2(q3 —q1) 2 p3—np
3+ - 3+ pr1)
p=1_7° 1mx+(ql sty — (43p3 — p191){(p3 + p1 2
2 2(qz — q1)

|
—5(q2(p3 + pU) +¢3p1 + pagi)yx

3p3 — Pl 3p3 —
AV Rt <qz g gy — Mﬂ) 2 (A19)
P3 — P1 pP3 — Pl
(2 2 12 A Y TANEYEPA
[ [(p3 +6p1p3+ PPy + J1Jy) + 2(pr + p3)=U + J3) sl
- . 02 e .
[(p3 — PG — 737 +2(p1 + p3) 5y — T
(p3— p1)? 2(p3 + p1)*(gs — q1)?pap
=|- x4 q22+q|q3— b pﬁq 2;1 Pip )’2
([7:3- - [71)
2
+ QCg2+q1 +q3)y + 2]
1
X 7+ (A.20)
p3=pi 2 @3=q)lgapapatzp) g pipi+2p] 0 qamag)
4+ (PI=pHp3+pr) : Pt
IX
2
X = (x e LB, @4 ,vz> D",
2 +as 8p1 (A21)
Vi= -y (l + pix + L 5 9: y) D!,

(3q1 + g3)(q1 + 3q3) 2

3
D=1-px+5@i+agy+

Gt G+ (Fa+3q0y+1) ({6a +qy+1) (A2

I = . . . N - S
v = Jj2G2 = J3) (g1 — q3)2v2 — pix?
0|=< q1 — 43 - ) 02:(_.0).
(g1 +393)p1 q1 + 343 P
- 4
03 = (_ q1 q3 - ) . (A23)
Bg1 +g93)p1 3q1 + g3

This mapping has three invariant straight lines and one conic reducible into straight lines:
() yv=0, (0502).

(2) vy =—4/(q1 +3q3), (010)),
3) v=—-4/3q + q3). (0303).
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The set of fixed points of this mapping is the conic A = A;A; (see Definition 2),

reducible into two straight lines A, Az, where Ay is the line of fixed points (y = const,

rar 3 = v . '
he variables § = 1/ 1/ 1

- —_ N 3 " n tha 13
/A — v 1

b — ,anotYe A ey ia o~
X y ¥ = const); Az: Y = v i8S ui€ 1ini€ O

fixed points.
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