
ELSEVIER Journal of Geometry and Physics 24 ( 1998) 265-290 

JOURNAL OF 

GEOMETRYANL) 
PHYSICS 

Algebraic-geometry approach to integrability 
of birational plane mappings. 

Integrable birational quadratic reversible mappings. I 
K.V. Rerikh ’ 

Abstract 

Using classic results of algebraic geometry for birational plane mappings in plane CP’ we present 
a general approach to algebraic integrability of autonomous dynamical systems in C’ with discrete 
time and systems of two autonomous functional equations for meromorphic functions in one com- 
plex variable defined by birational maps in C’. General theorems defining the invariant curves, the 
dynamics of a birational mapping and a general theorem about necessary and sufiicient conditions 
for integrability ofbirational plane mappings are proved on the basis of a new idea-a decomposition 
of the orbit set of indeterminacy points of direct maps relative to the action of the inverse mappings. 
A general method of generating integrable mappings and their rational integrals (invariants) I is pro 
posed. Numerical characteristics Nk of intersections of the orbits @,;” 0, of fundamental or indeter- 
minacy points 0, E 0 n S, of mapping @,, , where 0 = (0;) is the set of indeterminacy points of @,, 
and S is a similar set for invariant I, with the corresponding set O’n S. where 0’ = (O,‘} is the set of 
indeterminacy points of inverse mapping @,;I, are introduced. Using the method proposed we obtain 
all nine integrable multiparameter quadratic birational reversible mappings with the zero fixed point 
and linear projective symmetry S = CAC-’ . A = diag(fl), with rational invariants generated by 
invariant straight lines and tonics. The relations of numbers Nk with such numerical characteristics 
of discrete dynamical systems as the Arnold complexity and their integrability are established for 
the integrable mappings obtained. The Arnold complexities of integrable mappings obtained are 
determined. The main results are presented in Theorems 2-S. in Tables I and 2, and in Appendix A. 
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1. Introduction 

The problem of integrability of birational or Cremona mappings is constantly attracting 
attention of many researchers already in the course far more than 20 years [ l-201. The inter- 
est in this problem stems from the fact that dynamical systems with discrete time defined by 
such maps arise in very different scientific problems: autonomous reductions of differential- 
difference soliton equations [2,3], non-algebraic integrable reversible functional equations 
of static model in the dispersion approach [4-81, quantum integrable systems in lattice 
statistical mechanics [ 10-151, discrete versions of integrable systems of classic mechanics 
[ 181, integrable lattice nonlinear evolution equations [ 19,201 and others (see, for example, 
survey [9]). 

As a rule, owing to the existence of some discrete symmetry in systems, the corresponding 
mappings are reversible dynamical systems which are qualitatively similar to Hamiltonian 
systems [46-601, although, e.g., the reversible Kolmogorov-Arnold-Moser (KAM) theory 
possesses some features having no analogues for Hamiltonian systems [60]. The theorems 
on the existence of the KAM tori in reversible non-Hamiltonian flows [46-5 154-581 and 
non-symplectic mapping [49-52,58,59] further promote an investigation of the integrability 
problem of birational mappings. 

Recently, some authors have studied k-reversible mappings 161-631, which also may 
play an important role in various scientific problems. Therefore, a general approach to 
integrability problem can also be useful for their theory. On the other hand, it seems obvious 
that the integrability problem and the mapping dynamics are closely related and in this 
context it is very important to comprehend the dynamics of mappings and to establish the 
relations between integrability and such numerical characteristic of dynamical systems as 
the complexity introduced recently by Arnold [43,44]. 

Attempts to understand integrability of some concrete dynamical systems from the 
algebraic-geometry point of view [ 151 or in the framework of the discrete version [ 16; 171 
of the Painleve idea about a moving singularity were undertaken recently. 

Note also that integrability of polynomial plane mappings in the subgroup GA2 E BirCP2 
(or Cr2) was investigated in papers [9,64,65] and it is very interesting to analyse this problem 
from a general viewpoint of integrability of birational mappings. 

In papers [9,65] an integrability of autonomous dynamical system with discrete time 
given by bipolynomial mapping in C2 is defined by means of an existence of a non-trivial 
commuting map (symmetry of dynamical system). Below, in this paper, we define an in- 
tegrability or algebraic integrability of autonomous dynamical system with discrete time 
given by birational mapping in C’ by means of an existence of a rational first integral or 
invariant of the dynamical system. 

In this paper, using classic results of algebraic geometry for birational mapping in plane 
CP*, we find necessary and sufficient conditions for algebraic integrability of autonomous 
dynamical systems in C2 with discrete time and systems of two autonomous functional 
equations for meromorphic functions in one complex variable defined by birational map- 
pings in C’, we present the method of obtaining their rational first integrals and also obtain 
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the equations of the dynamics of birational mappings. We set the relation of some new 
numerical characteristics of dynamics of mappings with the integrability and the Arnold 
complexity. We also present the method of generating integrable plane mappings and on 
the basis of this method we obtain nine integrable multiparameter quadratic birational re- 
versible mappings with zero fixed point. An important role in our approach belongs to a 
new concept of the decomposition of the set of indeterminacy points of birational mapping 
and the set of their orbits. Thus, whereas in papers [4.5] and [S-S] we established very 
interesting relations between the non-algebraic integrability of some functional equations. 
defined by birational mappings in the group BirCP”, and classic results 138,391 in the theory 
of dynamical systems and in the transcendental number theory [40,4 I] (see also [42] where 
were also used the famous results [40,41]), respectively, in this paper we establish a deep 
relation of the algebraic integrability problem with the algebraic geometry and solve the 
problem. 

In Section 2. we reduce the problem of algebraic integrability of autonomous dynamical 
systems in C” with discrete time and systems of autonomous functional equations for two 
meromorphic functions in one complex variable to a finding of a rational invariant for 
corresponding birational mapping in CP*. 

Then in Section 3, we present a necessary brief review of the main definitions and results 
of the theory of mappings in the group BirCP* given in monograph [24]. In Section 4, we 
formulate a theorem on invariant curves, introduce a new concept of the decomposition 
of the set of indeterminacy points of a mapping and that of the set of their orbits, prove a 
theorem on dynamics of mappings and the central theorem of the paper on integrability of 
birational mappings and on this basis propose a genera1 method of generating integrable of 
birational plane mappings. 

In Section 5, we apply this method to quadratic birational reversible mappings and gen- 
erate all nine integrable maps with invariant straight lines and tonics, the explicit forms 
of which with invariants in the triangular and usual basis are given in Appendix A. The 
results of the dynamical studies of these maps are presented in Tables I and 2. where are 
also given the numbers Nk, related with the complexity by Arnold and having the meaning 
of the sublevels of the complexity. 

In the end, in conclusion, Section 6, we briefly discuss a relation of our results with the 
famous results of Kantor [28-3 I] and Wiman [34] in the finite subgroups of the Cremona 
group BirCP’ and results of M. Noether, E. Bertini, G. Castelnuovo and S. Kantor in the 
birational classification of linear systems of algebraic curves (see [26,37, Theorem 7.41) 
which like 126,271, became known to the author due to discussions with M.Kh. Gizatullin. 
V.A. Iskovskikh and A.N. Tyurin, when this paper was finished. 

In the subsequent paper, part II of this paper, we obtain, within this method, all integrable 
quadratic reversible mappings with a zero fixed point and with invariants generated by 
invariant cubits and study their dynamics. In the next paper we will consider the local and 
global integrability and non-integrability of the known cubic polynomial Moser mapping 
[64] in the framework of our approach. 
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2. Formulation of the problem 

Let z = (~1, ~2, z3) be a point of projective plane CP2 and mapping Qn : CP2 -+ CP2 

Gn : z H z’ = z; : z; : z; = 41(z) : 42(z) : 43(z) 

is a birational one (inverse mapping is also rational), where @i(z) are homogeneous poly- 
nomials of degree II in z. 

Let us introduce x E C2, xi = zi/z3, i = (l(2) and consider an autonomous dynamical 
system in C2 with discrete time 

i = (1,2), (1) 

and a system of autonomous functional equations for meromorphic functions xi (w), n E 
C2,wEC,i=(1,2) 

$‘j(xl(w),X2(W), 1)’ ’ = (” 2). (2) 

Let us call the systems (1) and (2) algebraically integrable if there exists a mapping 
C2 + C defined by a ratio Z,(X) = gW(x)/h,(x) of two polynomials of degree ZL, which 
is invariant with respect to the change n + n + 1 or w + w + 1: 

Z,(x(n + 1)) = ZW(x(n)), 

Then the equations 

Z,(x(w + 1)) = Z/J(x(w)). 

Z,(x(n)) = cl, cl = const, Zp(X(W)) = a(w), o(w + 1) = a(w), (3) 

defining the level lines of first integral or invariant of dynamical systems (1) and (2), give 
one-parameter family or pencil of algebraic curves of degree I_L due to a rationality Z,(x). 
Since algebraic curves of genus g are parametrized by rational substitutions at g = 0, the 
elliptic functions at g = 1 and the theta-functions of genus g at g 1 2 that, thus, we obtain 
general solutions of systems (1) and (2) in the form 

xi(n) = Fi(n + C2, Cl>, Xi(W) = Fi(W + B(W)> a(W)), 

where B(w) is an another arbitrary function in w with a period equal to 1, but the constant c2 
defines a point of reference on the level line (3). In [4-71 we investigated some non-algebraic 
integrable quadratic birational functional equations of the form (2) with a holomorphic 
invariant Zp (x). 

Below we are intended to find the conditions of existence of a rational invariants of 
birational mappings in CP2 and to present the method of obtaining them. 

3. Some facts from the theory of birational mappings 

Cremona mappings are birational self-maps of the n-dimensional projective space kP” 
over field k, for n 2 2, their systematic study in the case n = 2 and k = C was began by the 
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Italian geometer M. Cremona in the second half of the 19th century. From the algebraic point 
of view, a Cremona map is a k-automorphism of the rational function field k(z I. ~2, . , z,, ) 
in n variables, for some n 1 2. * 

The main tool for studying birational mappings is the technique of linear systems with 
assigned base conditions in dimension 2; the most complete modern treatment of them is 
presented in monograph [22]. Below we shall follow monograph [24] (see also 12 l-23,35- 

271). 

Definition-Theorem 1. Let i: = (Z 1, zz,z3) be a point of projective plane CP’. A mapping 
@,l : CPZ + CP2 

@,! : ; H 2’ = z; : z; : z; = f#JI(;) : 42(z) : $3(z). (4) 

where 4i are homogeneous polynomials in Z, i = ( 1.2. 3), of degree n, is called a birational 
mapping if it assigns one-to-one correspondence between z and ;‘, while the inverse mapping 
is given by 

cp,;’ : c’ H z = ZI : z* : 7.3 = &z’) : &‘, : qqz’). (5) 

and is also rational, +( being also homogeneous polynomials in z’. moreover. @i and @,! have 
no common factors. Associated with on is the linear system 4 = cl $1 + ~242 + ~343 (for 
c; E C). One-to-one correspondence for direct @, and inverse @;’ mappings is not fulfilled 
only at indeterminacy or fundamental points 0, E 0. 0; E 0’, o, /!l = (1,2, . , a). 
i.e.. common zeros of multiplicities i,, ib for functions @k(z), 4;(z), k = (1.2.3). and 
the associated linear systems 4.4’ (below we suppose without loss of generality that the 
coordinate ;3 of 0, and 0; are not equal to zero) 

8’4k CC) 
a+l~_m 

=0 forl=0.1.2 ,..., i,-1. O(m(1, 
iI ‘.I 0, 

a’@;(Z) 
;j+?7,_,, =0 for1=0,1.2 . . . . . ii-l. Oim51. 

. , ‘.? 0’ 
B 

and on principal or exceptional curves J,, Jb, o, p = ( 1,2, . . . a), 

J, ds [z: j,(z) = 0}, J~d~f[z:j;l(z)=O]. cr,p=(1,2 ,..., a), 

where j, , ji are homogeneous polynomials in z of degrees i,, ii, respectively, moreover, 
points 0,. 08 blow up into curves JA. Jb of degrees i,, ib and curves Ja, JL blow down 
into points 0;) Og, respectively (see the concept of a-process of blowing up of singularities 
in the theory of ordinary differential equations [66] and the Kodaira theorem in the algebraic 
geometry [23]). The multiplicity of a fundamental point is the multiplicity at this point of a 

’ From a modern Foreword [25] to monograph (241 by V.A. Iskovskikh and M. Reid in connection with a 
new edition of the book planned in the future. 
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general curve 4. In special cases tangency conditions of any two members of the associated 
linear system are expressed as multiplicities of infinitely near points [25], or adjoint points 
in the therminology of the Hudson book. The Jacobian J of the mapping 0,, equals 

The determination of the Jacobian is a very simple way to find the principal curves. The 
principal curves J, (J;I) intersect each other only in fundamental points 0, (Oh). 

If we substitute z from (5) into (4), we obtain the identity 

2; : z; : 2; = q4(4'(z')) : 42(4'(z')) : $3h#J'(z')A 

and there is a factor of proportionality 

G’($) s ‘i(“(z’)) 
Z; 

for all i E (1 2 3) 1, 7 

where G’(Y) is a homogeneous polynomial in z’ of degree n2 - 1. 
Linear combinations of the functions 4i, r#( 

define the first and second rational nets which are the images of nets of lines. The curves 
$J = 0, 4’ = 0 are rational (of genus g = 0). 

Remark 1. Note that for a polynomial mapping the functions 43 (z,), 4; (z) are identically 
equal to zy (see, for example, the known Moser cubic mapping [64]). 

Remark 2. The transition from CP2 to C2 is given by the change z --+ X, x E C2. Xi = 

Zi/Z3,i E (1,2), andxl=~i(XZ3,z3)/~3(x~3,~3). 

Remark 3. The set of numbers n; it, i2, . . . , i,, il 1 i2 > ... 2 i,, where i, are the 
multiplicities of all the F-points of Qn, including infinitely near ones , is called the charac- 
teristic of mapping on. The general mapping with a given characteristic depends on 20 + 8 
parameters. If the characteristic of the inverse mapping is the same, then this characteristic 
is called self-conjugate; otherwise, it is called conjugate. For n general, there are always at 
least two self-conjugate characteristics. There are the following inequalities for IZ 2 2 (the 
latest one is the Noether inequality): 

a12n-1, it + i2 5 n, it+i2+i3Ln+l 

All characteristics up to n = 17 are in [24]. At n = 3 and n = 4 they are 

IZ = 3: 3; 2, 1, 1, 1, 1, n=4: 4:3,1, l,l,l,l,l, 4;2.2,2,1,1,1. 
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Remark 4. Let iba be the multiplicity of curve Ji at point 0; and icup be that of curve Jp 
at 0,. Then we have the equality i,b = ika and the following relations between numbers 

” Iu. IB. i,~. expressing certain geometrical facts (summing in the left column over CY and in 
the right one over /I from 1 to a): 

Ciu = 3(n - I), Ci;l = 3(n - 1). (6) 

c ‘,: t- =I? - I. Ci;i’ = tt2 - 1, (7) 

c i,p = 3i’ p - 1. c i,p = 3i, - I. (8) 

C’ t,f,B = ibtt. 
Ix”’ rgtwp = i,n. (9) 

Ci$=i;12+1, xi& = if + 1. ( IO) 

C’ b&, = lp “i; (B # y). C&,di,fl = i,i, (a # v). (II) 

Remark 5. Consider properties of a general curve &(Y.‘) = 0 of degree /1 under the 
mapping (4). By map (4), the curve ,fjl(:‘) is mapped into curve j”($(:)) = j;:,(:) of 
degree p’ = /_uL. moreover, every point 0, which is i,-fold on 4(y) is pii,-fold on ,J:,. If 
,f,, (?) has multiplicities vj at points Ok, then (deg( jb) E ib ) 

moreover. j;:, has multiplicities yQ at 0, (see the meaning of i,~ in Remark 4): 

0 
yU = pi, - c i,p vi. (13) 

@I 

Remark 6. Let R = C $ p,, (pv - I ) be the reduction of genus of a linear family of curves 
{ ,fil ) due to all its ~71 p,,-fold points S,, E S other than its ~2 5 c y,-fold points from 0: these 
are mapped onto the multiple points SA of linear family {,f/l,] other than 0’, reducing the 
genus of ,f;:, by R also; let q be apparent freedom of curves (&], that is, the one calculated 
under the assumption that all the base points impose independent conditions on ( ,fjl ): 

Y = &(lc + 3) - 2 &PI, + 1) - fi: $&I + 1). 
I’= I (I=1 

then the relation 

(14) 

(15) 

expresses the invariance of genus p of curves ,&. 
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Definition-Theorem 2. The set of fixed points { DI} of mapping @,, (4) is defined as the 
intersection of two (n + 1)-its (the conic = the 2-ic, the cubic = the 3-ic, and so on) 

The intersections of those which are not invariant are the F-points 0, and the n inter- 
sections of z3 and $3. In general, therefore, the number of isolated points DI is n + 2. If the 
two (n + I)-its have a common part, consisting of fixed points only, and there is the fixed 
(invariant) curve, say Ap of degree I_L ( i(n + l), then the number of isolated fixed points 
is reduced. There are simple fixed points at a simple intersection ft. f2, simple fixed points 
of s-point contact and i-fold points. 

Theorem 1 (M. Noether). Every Cremona plane mapping can be resolved into quadratic 
mappings. 

Remark 7. The procedure of resolution of mapping Qn + @,,I o @2 into two simpler 
components @,,I, @2 is not unique since any @2 can be replaced by two others having two 
F-points in common; hence any set of 02 is equivalent to an infinite number of other sets. 
However, the normal resolution is unique and it is defined by the choice of three F-points 
of @2 being common with three F-points (top trio of maximal multiplicities it, i2, i3) of 
mapping @‘n. Then n’ is equal to 2n - il - i2 - i3 < n due to the Noether inequality (see 
Remark 3). After a series of such resolutions n’ will be equal to 2 and resolution is complete. 
It is obvious that @2 cannot be resolved in 01. Let us note that, if the top trio is on direct 
line, then the Noether method fails, but J.W. Alexander corrected the Noether theorem [26] 
in this case. 

Remark 8. Any generic quadratic Cremona mapping is generated by a composition 

@2 = B-‘ol,oB,, (16) 

where 

B:ZH j’ = Bz, B1 : z H j = Blz (17) 

are general linear mappings from the PGL(2, C) group and Z, is the involutive standard Cre- 
mona mapping with three simple F-points in (1 ,O,O), (O,l,O> and (O,O, 1) and three principal 
lines JU = ((zt = 0), (~2 = O), (z3 = 0)): 

I.( :Z H Z' = Z; :Z; : z; = 221.3 :ZIZj :ZiZ2. (18) 

In the triangular frame of reference ( 17) mapping (16) takes a very simple form 

@2 : j(z) H j'(z') = j[(z') : &(z') : $(z') 

=j2(z).i3(z) : jl(z)j3(z) : h(z)h(z). (19) 

The mapping @2 is specialized if two or three F-points are adjacent or infinitely near [25] 
and has, respectively, the following forms: 
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@‘2(, = B-‘oI,oB,, I, : i H i’=z;:~;:~;=z;:;]i~: 21-73. (20) 

@2t, = B-‘olhoB,, Tb : Z H Z’=$, : ,7: : -’ ‘,3 = 7.1 ’ : ;]Zz : (Z; -Z,Zj), (21) 

moreover, involutions la, Ib from (20) and (21) can be resolved as a composition of two or 
four, but not fewer, general mappings (16), respectively. Any two members of the net (20) 
touch one another and have a fixed common tangent jt K : t = 0, but ones of the net (2 1) 
have fixed common tangent j = zt and osculate a fixed conic *7f - ZI ;3. These tangency 
conditions are simulated by two or three infinitely near points, so as Eqs. (6)-( 10) remain 
correct. 

4. Main theorems of algebraic integrability of birational plane maps 

From Remarks 5 and 6 the following theorem follows. 

Theorem 2. For u plane curve fW(:) = 0 of degree u and genus p, defined hy,fi)rmula 
(15) the following two conditions are equivalent: (A) fP (2) = 0 is invariant under the 
mappings on (4) of characteristic n; il, . . , i, (see Remarks 3 and 4) and @,’ (5); (B) 
.&(z) is a solution of the ,fr,llowing ,functional equations (see (12)-( 15) in Remarks 5 
and 6) 

f;Lkm) = ICI-’ sgn(e) f@(z) fi j;“, 2 yUi, = K(n - 1). (33) 

where 0,. 0; are ycr -fold and yi -fold points of the curve f;,(z) = 0, and multiplicities )/w 
and yj satisfv the equation 

fkl 

(about i,, i,p see Definition-Theorem 1 and Remark 4), while sgn(e) = f 1 and number E 
is a constant. 

The number q offree parameters of the curve fl* (z) = 0 before the substitution into the 
functional equations (22)-(23) is given byformula (14) (see Remark 6). If q equals 1 then 
we shall obtain an invariant pencil, at q = 2 or 3 we shall&d an invariant net or web. 

Let us give a definition of an integrability or algebraic integrability of the mapping Qn (4). 

Definition 1. The mapping Gn (4) is integrable or algebraically integrable if there exists 
an invariant rational function of z 

I,,(-) = gw(z)lh,(z), r,(dJ(Z)) = Ifi( 
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moreover, equation Z,(z) = c = const defines the level lines of the first integral or invariant 
Z,(z). Note that this definition is equivalent to the existence of invariant one-parameter 
family or invariant pencil of curves f@(z) = ag,(z) + bh, (z) satisfying Eqs. (22) and 
(23) moreover, the homogeneous polynomials of degree 1-1 g,(z), h,(z) are any two linear 
independent solutions of Eqs. (22) and (23) with the same set vw, y;l. 

Definition 2. The orbit 0: of a point z with respect to the mapping @,;I (5) is the set of 
points 0: = @,L~(z) = (~Pp,‘)~(z), k E Z+, where Z+ is the set of non-negative integers. 

The orbit 0’; of a point z with respect to on (4) is defined analogously, 0’: = @i(z) = 

(@,)k(~) and @L(z) d!f 4ji,(@,,(...(z)...)), @,$(z,) dzf @,;‘(Q,;‘(... (z)...))(see, for 
example, [66,68,74]). 

Definition 3. If the number k of points of the orbit 0, of a point z with respect to the 
mapping 0;’ (5) is finite where k is defined by the condition 

0; = qk(z) = z, k E z+, 
then the periodic points (@;‘n (z)), m = (0, 1, . , k - 1 ), form a cycle of index k or 
period k of the mapping @,;I (2). but z is a fixed point of the mapping @,Fk(z). A cycle of 
index k of the mapping Q,(z) (4) is defined similarly with the changes: 0, H 0, and 
o,;“(z) H Q,:‘(z) (see [68]). The number rrm of cyclic sets of order m = p;” p;))’ . . pr” 
is given by the Kantor formula [26]: 

Definition-Theorem 3. Let @,! (4) be a mapping of characteristic n ; i 1, i2, . . . , i, and @,; ’ 
(5) be the inverse mapping (see Definition-Theorem 1, Remark 3). Define the decomposition 
of the sets 0,O’ of fundamental points 0,. 0; of these mappings as follows: 

0 ~ ~(cyc) u O(int) u o(inf), 0’ ~ 0dcYC) u O/(int) u odinf). 
(26) 

Here O(‘“‘) is the subset of fundamental points 0, with infinite orbits, O(‘Y’) the subset of 
fundamental points 0, having cyclic orbits 0”, z E 0, of index m, or cyclic orbits with 
tail i e. O’+* = 0” = z x z E 0 x # z, and Ocint) 3 1 IS the subset of fundamental points 
0,: whosl orbits s$. z = 0, E 0: intersect the set 0’ and finish for some k = k,p by 
points 0; (0, = 0; at k,p = 0). 

Introduce numbers Nk as numbers of intersections of the set 0; of orbits O$, z E O@*), 
with the set O’(i”t) (see Definition 2): 

Nk = #(~;,,,,, f-l o’(int)), (27) 

where #A denotes the number of points of the set A. The decomposition of the set 0’ with 
respect to the action of the mapping @,1 is entirely analogous. It is obvious that 



Definition-Remark 1. Arnold [43,44] introduced and investigated such characteristic of a 

dynamical system as the topological comp1e.G~ of the intersection of a submanifold, moved 
by a dynamical system, with a given submanifold of the phase space. In the simplest case for 
plane mappings @ the complexity Cz (k) can be defined [4S] as the number of intersection 
points of a fixed curve fl with the image of another curve Fl under the kth iteration of 0: 

If the mapping Q, is a birational one in BirCP’ and the curves f-1. l-2 are algebraic curve\ 
in CP’. then it is easy to see that the growth of CT: T, r2 (k) will in general be as follows: 

C” A,r,,-2(k) = deg(rl)deg(rz)&(k) I deg(rl)deg(f2)(deg~)“. 

where d@(k) = deg(&) is the degree of the mapping @“. which agrees well with general 
Arnold’s results for smooth mappings and diffeomorphisms 143,441. 

Theorem 3. Let d(k) be the degree ofthe muppirrg @f , 
0,, (4). the ruunber of points of the set Ocint’ 

the kth iteration of the mtrppiq 
br iw less them :ero, #O”“” 2 0, rmd 

y,(k). yi(k) be the multiplicities of the curvrs @Ik’(:) = 0. i = (I, 2. 3). at,fimdumelttaI 
points of the direct mapping (4) 0, und the imvrse one (5) 0;. Then the ciwcmzics of thr 

mcipping @,, (4), 0;. k E Z+, ofcharcrcteristic II: iI. i2. . . . i, (.see D~~lfillitiorl-Tlleorrln I, 

Remurks 3 cmd 4) is completely determined by the ,~)llowin~~,~~~-~17ulLl~~: 

Qk : -t-+7’ I, + i. ;; : :; : ;; = c#pk) : qq’k) : @y(:), (38) 

c&%3 ~~~x)(oyk), ([~,j_‘~(O,)]YU(F,_‘). I = I.. . /llu~). .). (39) 

d(k) = nd(k - I) - xi$yk(k - I). (30) 

y,(k) = d(k - I)i, - xivpY(l(k - 1). (31) 

moreo1’el; 

d(0) = I. d(l) = IT. y,(l) = i,. yU(k) = 0 ,fiw k 5 0. 

yi;Ud = y,(k - map) ,fi)r all a. b 

thut 

@,;“‘w (0,) E 0;. 0, E olinI). Ob E o”int). 

und, uccording to (32) and (33), 

y;(k) = 0 .f;)r k 5 rn,b, yi(mafl + I) = i,. 

(33) 

(33) 

(34) 

Proof Let us prove the theorem by induction method. Let us consider the kth iteration of the 
mapping 011 (4) as a transformation of the curves @j’-” (r) = 0 by the action of the mapping 
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@Jn (4). Let the numbers y,(k - l), y,(k - 1 - 1), 1 = 1, . , m,~, be the multiplicities of 

the curves @,?-I) (z) = 0 at the points (O,, [@i-” (O,)] E 00,~ 1 = 1, . , m,p) and let 

@!-n’ua) (0,) = Ob, where we indicate explicitly only the points 0, E Ocint), 0; E O’(i”t). 

The existence of other points 0, E 0 (‘Y’), 0, E Ocinf) (see Definition-Theorem 3) is not 
essential for the growth of d(k), although their multiplicities are also defined by (30) and 

(3 1) only with other conditions on ‘-r”“(O,) E Og for O,, Og E O(cYc). 1 = 1, . . . , rap, 
and for 0, E Ocinf) ,I=1 ,..., k-l,in(29)and(33). 

Then, according to Remark 5 and Eqs. ( 12) and (13), we have 

6’) (z’) = 4?‘(z) fr j2(k-1'(z) 
8=1 

and obtain formulae (30) and (31). 
Now prove the equalities (29)-(31) for k = 1. Indeed, d( 1) = n, yU( 1) = i,, therefore 

y;(O) = 0 and the proof is completed. 17 

Now we can state a general proposition about the necessary and sufficient conditions of 
algebraic integrability of Dn (4) (see Definition 1). 

Theorem 4. Let 0,, (4) be a mapping of characteristic n; il, iz, . . , i,, @,;’ (5) be the 
inverse mapping of characteristic n; ii, ii, . , ik and i,b be the multiplicities of curve Jp 
at 0, (see Definition-Theorem 1 and Remark 3). Accomplish the decomposition of the sets 
0,O’ of,fundamental points OU, 0; with respect to the action of mappings @,I-’ and an 
(see Definition-Theorem 3). 

Then, if the mapping @,, (4) is algebraically integrable and IP (z) is its invariant (see 
Definition l), the set S = (g,(z) = 0) n (h,(z) = 0) of p2 (due to the Bezu theorem) 
indeterminacy points of multiplicities ( yU, yi, pu} E the set r of the invariant IP (z) admits 
the,following decomposition: 

s _ S(CYC) u 6&W u s’(cYc) u SW) u S, (35) 
S ~ S(cyc) u SW) u S’(cyc) u S”(W), (36) 

where 

S(CYC) c (pYC), S(int) s O(int), sf(cyc) c ot(~yc), g(int) c of(int) 

’ 

(37) 
S@yc) E c&-) \s(cyc) 1 S(int) E (3,i”t)\s”‘) c o’s,i,“,,\s”‘nt’, 
$cyc) ~ of_ \$(CYC)) p(cYc) : os,,(cyc) SE S”@YC), (38) 

where the expression A\ B means a set A without a set B, moreover the set SC’“‘) corresponds 
to the set Sint) as the set Otint) corresponds to the set O’(i”‘) and #Sint) = #Sint), but 

p2 = #S (CYC) + #s~(~YC) + 2#S(int) + #I& (39) 
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The sets ef multiplicities yol, yj correspond to the indeterminacy points ,from the subsets 
s(cyc) U S(int), fg(CYc) u Sdint), but the one p,, corresponds to the indeterminacy points,from 
the subset s. 

For the mapping On (4) being integrable and having$rst integral or invariant I,,(z) = 
g,‘(z)/ h, (z), which is equivalent to the existence of a one-purameter ,firmily or pencil 
of invariant curves fW(z) = agcc(z) + bh,(z) of degree F, the,following conditions (Ire 
necessary and s@?cient: 

(1) #(O”““) # 0, (30) 
(2) there e.xists non-trivial set of integers: degree ofinvnriant w and a set ofthe multiplicities 

ya. y/; sati&ing the following equations: 

and 

(42) 
+I ff=l @I a=1 

(3) the dimension r of linear system of invariant curves .f,(z) with the set S of the basis 
points determined above by (35)-(39), (4 1). (42) and multiplicities yu. y;l determined 
by (41) and (42) is not less than one, r > 1. and dejned as a number of line&? 
independent solutions of the functional equations (22) and (23), reduced by one, und 
moreover; if their number is equal to r + 1 then the number ?f invariants IM (z) eqLln1.v 
r und r - 1 of them depend algebraically on the remaining invarinnt. 

Note that conditions (1) and (2) are necessav but the one (3) is s@icient. moreo\ler. 
condition (2) completely dejines the set S not defined completely by conditions (35)-(39). 
!f conditions (l)-(3) are fulJilled, then the mupping @,, (4) is integrable and the invcrriant 
I,,(,-) is of the,form I,(z) = gW(z)/h,,(z) forfunctions g,. h, being a linear independent 
solutions of the,functional equations (22) and (23) with the same signature sgn(c) md of 
the.fijrm Z,( (z) = [g,(z)/ h, (z)]’ for th e case of diferent sgn(E) (see Theorem 2). 

The genus p of the pencil sf invariant curves jjL and the number q of free parameters of 
,fil (z) bqfore solving the,flmctionul equations (22) and (23) are determined b! th~~,formultre 

q = $(P + 3) - c ;n(yU + 1) - c ;)@v;i + I) - c ;,,& + I ). (44) 

Prooj We will look for the first integral or invariant of degree p I,(z) = s,~ (L.)/ h,, (z) 
of the mapping @,, (4) of some characteristic (see Remarks 3 and 4). This means that we 
have a linear family of curves of degree p, genus p and freedom q = 1 (see Remark 6). 
that is a pencil of curves fiL(z) = a~~(z) + bh, (z) which are invariant under mappings 
@,, (4) and 0,;’ (5) and, consequently, are solutions of Eqs. (22) and (23). This means also 
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that there is a set of multiplicities f dg 1~~. yj, pv] of the curve .fLl (z) = 0 at F-points 
0, E O(W) u Ow, 0; E @YC) u OfW and at other indeterminacy points of nvariant 

I (:) (p,,), satisfying Eqs. (41) and (42). 
Eqs. (42) are consequences of the last equation of (4 1). In fact, summing the third equation 

of (22) over a! we obtain the first equation of (42) (see Remark 4 and Eqs. (6) and (8)), 
but squaring the third equation of (41), then summing over a! and using (7), (9)-( I I ) and 
the first equation of (41) we obtain the second equation of (42). Thus, the sets of those 
F-points 0,. 06, for which multiplicities y@, vk are not zero, are the sets S(‘Y’), Stint) and 

S r(cyc) g(int) 

Since the points 0, (0;) are not indeterminacy ones of the mapping Q,;‘(Z) (5) (Q,,(Z) 
(4)), it is necessary that the orbits 00, (0’ 0;i ) of these points 0, (0;) are composed without 

the initial points of the common indeterminacy point sets S(‘Y’), Stint). s’(‘Y’) in (36) (see 

(35)-(38)). Let the number N of points of the set S\S”(“‘) be smaller than p’: 

N = #s\$‘(cyc) < p2. 

Then find the number of such cycles of the mapping Q,(Z) (4), other than cycles 
S(‘Y’), S’(cyc), for which the total number of points of the set S”(‘Y’), as the union of these 
cycles. equals 

#S’,(cyc) = $ _ N, 

Condition (40) is necessary for integrability since otherwise the Arnold complexity, coin- 
ciding with degree d(k) of the kth iteration of the mapping Q,,(Z) (4), will grow as nk (see 
Definition-Remark 1 and Theorem 3). This growth corresponds to a generic mapping which 
is obviously not integrable. Thus we obtain a pencil of the p-its with the total number of 
free parameters (freedom) 4 and the genus p determined by Eqs. (44) and (43). 

Due to a possible existence of some symmetry in the sets of points 0,. O;( E S, the 
actual number of free parameters qact may be larger than the number given by Eq. (44). The 
substitution of the family of curves of degree p thus obtained into functional equations (22) 
and (23) gives a set of r + I linearly independent solutions of Eqs. (22) and (23) and r first 
integrals or invariants of the mapping under consideration. 0 

Two remarks follow. 

Remark 9. It is obvious that, if the mapping Q,(Z) (4) has an invariant I,,, then it has 
an infinite number of algebraic invariants of the form IL, = R(I,), where R is a rational 
function of ZI1, moreover, all invariants depend algebraically on one of them. However, the 
minimal invariant is unique up to a linear-fractional change. 

Remark 10. It is obvious that if we have found an integrable mapping @J : z’ = Q(z) and 
its minimal invariant Zfl, I,,(@(z)) = Ip (z), then we have an infinite number of integrable 
mappings @’ : z’ = P-l o@ o W(z) of birationally equivalent to the initial one and their 

invariants are Z,lf(z) = I,,oS(z). 
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The following theorem presents, as a corollary of Theorem 4, the method of generating 
integrable plane birational mappings. 

Theorem 5. Let us have a mapping in group BirCP2 of characteristic. n; il. . i,, .sut- 
isfiing Eqs. (6)-( 1 1). with generic F-points 0,. 0;. Then the,follo~ing recipe generate.s 
integrable mappings.. 
( 1) Let us set al + o2 conditions of the,following,form.s: 

@y’wP (O,)=Ob for cr,jY=crl,t4):.. . : a,, . B m,. (45) 

@,/W (O,)=Og for ~.B=QII,BI:...:~~~.~H~,. (46) 

and analogous conditions with the change 0 e 0’. mUe. rUs. 02 c-, - (m,b, r& ), (~2. 
(2) Let us set a3 conditions of the,form 

O”(r) = ;. - $0.0’ c (37) 

and let us have the sets of cycles C t : (: t , . . , :x, ), . . C,? : (: t . . . , :k,, ). The remain- 

ing o -o) --a2 points of the set 0 and o -o) -a? points ofthe set 0’ belong to Ocinf’ and 
0 ‘(inf). Then we shallform thesets S(‘Y”. Sint). S’(‘Y’). Stint), S according to (35)- (38) 
and construct a pencil of curves of degree p, satisfying Eqs. (39)-(42). The substitution 
ofthe general curve ofthepencil ofcuwes fP (z) = ~g,~ (:.) +hh,, (z) into the,fkutional 
equations (22) and (23) with subsequent determination of free parameters guarantees 
that Mle have generated an integrable mapping ofthe characteristic under consideration 
with r im~ariants I,,(z) of the form f,,(z) = ,gn (z)/ h,, (z) ,for,functiorrs gtc h,, being 
.solutions with the same signature sgn(t) and of the,finm I,,(z) = [R,~ (z)/ h,, (:) 1’ for 
the case of d$erent sgn(e) (see Theorem 2). 

5. Integrable birational quadratic plane reversible mappings with zero fixed point 
and their invariants, generated by invariant lines and tonics 

Let us give a definition of reversible mapping. 

Definition 4. Let X be an arbitrary set. A one-to-one mapping T : X + X is said to be 
reversible if there exists another mapping G : X -+ X for which T-’ = GoToG and G is 
an involution: G2 = id [3,5 1,531. 

These conditions imply that T o G is also an involution and T = (T 3 G) o G is the 
composition of two involutions. Conversely, the composition of any two involutions is 
reversible with respect to each of them. 

To demonstrate applications of Theorems 4 and 5 for our approach, we will generate 
all nine integrable birational quadratic plane reversible mappings with a zero tixed point 
and their invariants generated by invariant lines (see Appendix A: IV and V) and invariant 
tonics (see Appendix A: I-III, VI-IX). The characteristics of these mappings such as the 
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Table I 
Basic characteristics of nine integrable birational quadratic mappings (see Appendix A) with zero fixed points 

N @;“O, k @2-k03 k 0,k02 k S, No NI d(m) WI Ninv 

I 0; 0 0; 0 0; I -1 2 1 2 2 1 

II 0; 0 0; 0 0; 0 +1.+1,-I 3 0 1 or2 1,2.4 3 

III 0; 0 0; 0 E O(i”f) -1 2 0 2 4 1 

IV” 01 l 0; 0 02 1 $1 1 0 m+l 1.2 2 

V” 02 1 0; 0 01 1 -1. +1 1 0 m+l 2.2 2 

VI 0; 0 0; 1 E o(inf) -1 1 1 mfl 4 1 

VII 0; 0 0; 
1 E @If) -1 1 1 mfl 4 1 

VIII 0; 1 0; 1 E (plf) _, 0 2 2m 4 1 

IX 0; 1 0; 1 02 1 +1 0 2 2m 2 1 

Nk = #(cbTkO) fl 0’. 4$ E id, k = 0, 1, tit is the degree of the invariant, the value 6, equals: 6, = 

sgn(e,)/sgn(eh). 
a A mapping generated by invariant straight lines, Ni”, is the number of minimal invariants, and N is the 
number of the mapping in Appendix A. 

Table 2 
Relations between parameters in the matrix B (58) 

N 1 2 3 

I PI =o P2 = 0 42 = 43 
II P3 = -PI P2 = 0 43 =41 

III P2 = 0 42 = 4; 
IV P2 = -PI 42 =41 
V PI =o p2 = 0 

VI P3 = 3Pl P2 = -PI 43 = 02 
VII P? = PI P3 = -3P1 Y3 = 42 

VIII P? = 1’; q2 = 9;* 
IX P3 = PI P2 = -PI 42 = ,;** 

4; = (41 P3 + 93PI )l(P3 + PI ). P; = -(PI + P3)/2> 4;* = L-q1 Pl(Pl + 3P3)+43P3(3PI + P3)1/ 

(Pi - Pf,. ,;** = (rll + Y3)/2. 

degree d(k) of dynamics of mapping @i related to the Arnold complexity and the introduced 
numbers Nk of intersections of orbits Og(inr) with the set 0 ‘(int) being the sublevels of the 
complexity are listed in Table 1 and the relations between the parameters of the mapping 
appearing from the necessary conditions for integrability of the mapping under consideration 
are presented in Table 2. First of all make some general comments on quadratic mappings. 

Consider a general quadratic mapping j(z) H j’(z’), z, z’ E CP* in the triangular basis 
(see Remark 8) with pairwise distinct F-points O,, 0; (the case of two or three adjacent 
F-points is not essential for our approach and we will consider this case elsewhere): 

@2 : j(z) k-+ j'(z') = j;(z') : j;(z’) : j$(z’) 

= j,(Z)j3(Z) : jl (Z)j3(Z) : jl (Z)j,(Z)> (48) 

where j’ and j are defined by linear mappings B and BI: 
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B : : H j’ = Bz. B1 : I H j = B],-. (49) 

Consider a general quadratic reversible mapping with involutive symmetry between the sets 
0. 0', namely 

BI = BS, S = CM-‘. S’ = id. A = diug(*l). (SO) 

where 

(51) 

and C is the fundamental matrix [76] for the involutive matrix S. 
Substitute ; H II = C-l=. into (50) and (49): 

j’ = Bsu. j = BsAu. Bs = BC, (52) 

where 

A : Al = diag(-I, 1, l), A2 = diug( I. -1. 1). 
Ay = diag(-I, -1. 1). Aq = dia,eg(l, 1, I). 

(53) 

where A4 defines the involution (see (48)-(53)). The case of a mapping with AJ is not inter- 
esting and we shall not consider it. Mappings with A2 and A3 are reduced by a substitution 
to a mapping with A = A 1. 

Indeed, make substitutions u + 12 = P214, Pi = id. and II + i = I PJU. P: = id. 

where 1 is the imaginary unit. 
Then 

j' = Bzfi, j = B2AzV, B2 = BP?. A? = PzAl Pz. (54) 

j’ = B$. j = BjA3:, B3 = BPJ. A3 = -!?A1 P3. (55) 

where the matrices P2, P3 are defined by 

i--(H A 8), p$ 8 i). 

Now we can make the following remark. 

(56) 

Remark 11. We will consider below the general quadratic mapping defined by (48). (49) 
and (50) with the matrices C E id and A E A 1 remembering that we can always perform 
the changes mentioned above in integrable mappings obtained and to extend future results 
onto these cases. 

It is clear that by no transformation z + u = Dz one can satisfy the equation 8 D = B 

,j’ = BDz. j = jD(D-‘AD): = BDAz, D-‘AD = A. (57) 
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where 

PI 41 1 
B = p2 q2 1 . 

( 1 P3 q3 1 

(58) 

The general case ri $ 1 Vi is to be considered separately. For simplicity we will consider 
below mappings with a zero fixed point, which implies B = B. 

So, we have three principal lines Ji, .I; and three F-points Oi. Or, Oi = (jj = O)n(jk = 

0). (x = i), y = Z2, i: = Z3, A = AI), 

ji = -PiX + (7i.V + Z, jl=PiX+qiy+Z. i E (1,2.3), (59) 

oi = (4j - qk, Pj - Pkt Pkqj - Pjqkl+ 

i#j#k, i,j,kE(1,2,3). O(=AOi. (60) 

Find all integrable mappings and minimal invariants generated by invariant lines and tonics. 
Then p” equals 1 or 4 and we have to construct the set S of singular points of invariant 1,‘. 
According to Theorems 4 and 5, Definition-Theorem 1 and Remark 4 for n = 2 we obtain 
that all the points O,, Ok are simple and 

lo1 = ib = 1, i,p = 1 for o! # /3, i,, = 0, 

3 3 3 

c yQ. =2, c y;l =2. ya=2- c 6. 
(Y=l )!kl p=l.p#lx 

(For invariant lines we should replace 2 with I in these equations.) Since an irreducible 
conic cannot have a 2-fold point O,, Oh, we have only two numbers yol, yj for tonics and 
only one number for lines (say, yt and yj, y,’ and y; for tonics and say, y3 and y; for lines) 
which are other than zero and equal to 1. 

Set a decomposition of the sets 0. 0’ and consider the following conditions according 
to Theorems 4 and 5: 

@zPkOi = 0’ 
J’ 

Q-“0. _ 0’ 
2 J- i, i, j E (1,3), k=O, 1, (61) 

&O. - 0’ 
2 I- i’ @zkOj = 0:. (i fj) E (1,3). k=O. 1. (62) 

Then solving these equations for general values O;, 0; determined by (60) and using the 
equations 

@2’ : j) : j2 : j3 = j; jj : j; j; : j; j;, (63) 

$(oi) = Pt(qj -qk) + qt(Pj - Pk) + Pkqj - Pjqk, i # j # k. I E (1,2,3), 

(64) 

we obtain the relations between the parameters in the matrix i (58) for all integrable 
quadratic mappings with invariants generated by invariant lines and tonics (see Table 2). 

Substituting the following general forms for invariant curves ft (j(z)), ,f2( j (z)): 

.ft (j(z)) = ajt + bj2, (65) 
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into the equation for invariant curve (22) and requiring the existence of at least two linear 
independent solutions of this equation we have found all integrable mappings and invariants 
f,, (see Appendix A: I-IX). Using Eqs. (28)-(34) from Theorem 3 we obtain the growth 
d(k) for the degrees of integrable mappings @,k(z) (see Table 1 and Appendix A. items 
I-IX). Note that the mapping 1 follows from mapping V at q~ = qz. 

6. Conclusion 

As we can see from Table 1, the dynamics of an integrable mapping is determined by the 
numbers k = kmin and Nk,,, which are the index and number of intersections of the orbits. 
In the sequel to this paper we will obtain by this method all integrable quadratic reversible 
mappings with invariants generated by invariant cubits, and will study their dynamics. In 
another paper we will consider the local and global integrability and non-integrability of 
known cubic polynomial Moser’s mapping [64] in the framework of our approach. The 
theorems of this paper give us a possibility to investigate new lields such as meromorphic 
functions of the group BirCP2, the integrability of the Poincare resonant systems determined 
by the birational mappings and others questions. It would be very interesting to analyse in 
the framework of our approach various relations between the conditions of the local (see. 
for example. the Bryuno conditions AZ, A’, , A’,’ in 9-l 1 [67. Theorems]) and global inte- 
grability and non-integrability, between the (algebraic) integrability and the non-algebraic 
one for birational (reversible) plane mappings. 

As reversible mappings are qualitatively similar to symplectic mappings, it will be very 
useful for this analysis to exploit the enormous experience gained in the integrable and non- 
integrable Hamiltonian systems (see monographs [68-721). It would also be very interesting 
to modify our approach by using the powerful technique of the differential forms (see 
monographs [73-7.51) that 1 intend to make in one of future papers. 

Let us make some comments on the famous results in the birational classification of linear 
systems of algebraic curves of genus p due to M. Noether, E. Bertini. G. Castelnuovo and 
S. Kantor (see [26, Chap. 4; 37, Theorem 7.3)) 

Theorem 6 [37, Theorem 7.31. 
( 1) A curve of genus p = 0 is &rationally equivalent to a line. 
(2) An elliptic curve (ofgenus p = 1 ) is hirationally equivalent to a cubic without multiple 

points. 
(3) A hyperelliptic curve of genus p is birationally equivalent to a curve of degree p + 2 

hatirlg a single p-fold point. 
(4) A non-hyperelliptic curve of genus p 1 3 is birationally equivalent to a normal non- 

singular curve (without multiple points) of degree 2p - 2 in space CP”‘-‘) unambigu- 
ousl~ dejined up to a projective transformation. 

Then in case (1) because of the pencil of rational curves is reducible with the help of some 
Cremona mapping to the pencil of lines the mapping O,, (4) having an invariant pencil of 
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rational curves is conjugate (in the Cremona group) to the Jonquieres transformation (see 
[24]) which maps a pencil of lines into a pencil of lines. 

In case (2) it is enough due to the Bertini theorem [26] to receive an invariant pencils of 
curves of degree 3r with nine r-fold basis points (the Halphen pencil), then the remaining 
invariant pencils of high or other degrees and genus 1 are birationally equivalent to the 
Halphen pencil. Note that in the frame of modern algebraic geometry the Halphen results 
were repeated and supplemented in [77]. 

In case (3) the mapping @,, (4) having invariant pencil of curves of genus p is birationally 
equivalent to the Jonquieres involution [24-261 or a composition of such an involution with 
a projective transformation. 

In case (4) the mappings O,, (4) having an invariant pencil of curves of genus p are 
birationally equivalent (see [37]) to the involutions of finite order (periodic transformations 
of finite order) (see papers of Kantor [28-3 11, paper of Wiman [34] on finite subgroups in 
the Cremona group and [26, Chap. 41 about these results). 

In the end we should like to point on possible applications of our results and the Kantor 
and Wiman results for the involutions of finite order to an investigation the k- reversible 
(birational) mappings (see [6 l-631). 
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Appendix A 

I 

x’ = x(qlY + 1) Y 

(1 - P3X + q2y)[l + (41 + q2)yl’ y’= -1 $(q1 $_qz)y' 
(A.11 

I= 
Y2 

[(41 +92)Y + 212' 64.2) 

II 

x’ = x(q2y + l)D_‘, y’ = 
( 

p: 2 -y--x -41Y2 D-l, 
q2 -q1 1 
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D=l+(q2+2ql)y+ 
qlP; -2 + (q2 + ql )q1y2, 

42 -ql 
(A.3) 

I] = YIY + 1 
x ’ 

I2 = (q1.v + 11* - ,+x2+ (a?‘+ II2 
x(q?_y + 1) 

,3 = (q1.Y + u2 - p$’ - (q2y + I)’ 

x(q2)’ + I) 
13 = 1; - 4(If - pf). (A.4) 

172 = 0. 
q? = qlP3 +43PI 

P3+P1 

D-l 
7 

y’ = -.v + 
P: -P.: 

w/l -43f 

2 -~ 

D = 1 - (~3 + PI)~ + (42 + q] + q3)v + 
(P3Yi - p1q3)(p3 + PI) 

%I -q3) 
x2 

-(P341 + Plq3b.Y + &!3(q2 f 41) + YI(Y2 + Y3)lV’. 

I= 
[(j2 - j3)(ji - j2)12 

tp3(j2 + j,)(j) - j2) + pl(jl + jz)(j2 - j,)]’ 

[((Sl - q3)l(p3 + PI ))* 4’2 - x212 
ZZ 

[ 
(p3 - p])x2 + WY + (~I-~m~;~?+2~~l~?] 

2’ 

(A.5) 

(A.@ 

1 
-_ 

. q2 

1 

-1 (P3+Pl)q2’ q2 * 

(A.7) 

(A.8) 

02 = 
ql -43 

p3q1 - p1q3 ’ 
(A.91 

Note that 0; = 01, 0; = 03. The invariant conic in the nominator of the expression for I 
decays to two straight lines, transforming one to another by the mapping, and the denom- 

inator is either an ellipse for k = (41 - qx)(ql + q3 + 2q2)/[(pl + p3)(p3 - PI)] > 0, 
or a hyperbola for k < 0, intersecting v-axis at J = 0 and y = -4/(ql + q3 + 2q2). The 
fixed point is x = .v = 0. 
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x’ =x(1 - p3.x + q3y)D_1, y’ = 
i 

_Y i d - I’:*? - P3XY - q,y” D-l, 
cll -q3 J 

(A.lO) 

D = 1 - p3x + (2qi + q3)Y + “(p’ - p?x2 + ql (ql + q3)Y2, 

1 +qlY jl +.i2 
q1 7y3 

I,Xp=- 
j2 - jl ’ 

12 = .I152 

x (.A - j2j2’ 
1; = 1 + 412. 

(A.1 1) 

V 

x’ = 
x + (q, + q2 - q3)xy + (-$$3--yl)y2 Y 

(1 - p3x + 43Y) [1 + (41 + 42)Yl ’ Y’= -1 +(ql +q2jy’ 

(A.12) 

Y2 

[2 + (41 + q2)v12’ 

I = (1 +qlY)(l fq2.Y) 

2 [2 + (41 + 92)Y12 ’ 
(A.13) 

VI 

d-x(1 - PIX +q,y)D-‘, y’ = -Y - 
4P: 

-x2 + yplx - q2y2 D-l. 
ql -92 

(A.14) 

D = 1 - 3~1~ + Gq2 + ql)Y - 2pl(q2 + ql).v + q2(ql + q2)Y2 

+ 
2P:kl +q2) 2 

ql-q2 xt 

I= 

[ 

(jl + h)(j2 - j3)12 

3j2(j1 - j3) + jtj3 - ji 1 
2 

= 

VII 

(A.15) 

vp:x2 + (41 - q2)YCqzY + U12 

[(q1 + 42)Y + 212x2 . 
(A.16) 

x’=x(l - PIX +q,Y)D-‘, 
-I 

Y’ = -Y(l +3/71x +q2y)D , 

D = ’ + PIX + (Sl + 2q2)y + 2Pl(41 + q2)xy + q2(q1 + 42)Y2, 

I = Wl + j3)j2 -t (ji j3 + jz)l’ 

[(A - hI(j2 - j3)12 

= cOKjt ‘-2p1 2x2 + (Sl + 3q2)y + q2Cq1 + q2)y212 

.v2x2 

(A. 17) 

(A. 18) 

VIII 

p2_p’+P3 
2 ’ 

q2 = -41 Pl(Pl + 3P3) + q3p3up1 + p3) 
2 

&PI 

xI= x + P3ql + Plq3 ~PIP~ (43 - qd2 2 D_l 

p3+p1 xY-P3+PI(P3-PI)2Y ’ > 
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__?: + (P3 - PlI(P3 + Pdr2 + P3 + PI ?‘~ _ 43P3 - Plql 

p3-p, ?’ 
2 D-l 

2(q3 - 41) 2 . 

x + (q, + q3 + q2jy _ (q3p3 - Plql )(p3 + PI) .r ? 
2(q3 - 41) 

-&2(P3 + PI) +q3p1 + p3q1)_v.r 

+q3p3 - Plql ( Y3P3 - PlYI 
42 + 43 + q1 - _ 

> 

,z 

P3 - PI m-p1 ?* 
(A. 19) 

I = I(P: + 6~1~3 + p:Wf + j;j;, + 2(p1 + p3j2(j; + j;)j;~~ 

[(P3 - pi)C$j; - $‘I + 2(p1 + m)j;(j; - j;)12 

(p3 - Pl)2x2 + 

4 

q; + qlq3 _ 2(P3 + Pl )%I3 - ql )2p3pl 

(P; - I):,” 

y2 

1 2 

+ G%2 + ql + q3)y + 2 

I 
X 2’ (A.20) 

pI-pIx2 _ ~4~-~l~~43P3~P3+~PI~-qIpI~pI+~p~~I $ 
4 (I’-Pfui+PI 1 

_y3-41\ 

P?+I’I 1 

IX 

2 = ( 41 fq3 
x - p,x’+ ~ xv + (cl1 - c/d2 2 

y’ = -,I X 1 + plx + &I, D-y;’ ) 
v D-l. 

(A.21) 

D = 1 - PIX + ;(‘/I +q3)?; + 
oq1 +q3jcq1 + 3q3) -2 

8 
? 3 

I = (j2 +j3)(ji +j2) = ( i(ql +3q3)v + ’ > (:%I $q3)g+ I) (A.22) 

(Jo - jz)(jz - j,) &(q, - q3)‘?‘2 - pfx2 

q1 -q3 4 -~ 
(ql +%3)PI' q1 +3q3 

q1 -a _~ 
(3c/l + 43)Pl' %I 

(A.23) 

This mapping has three invariant straight lines and one conic reducible into straight lines: 
(1) .Y = 0. (0;02), 

(2) ?’ = -4/(q1 + 3q3). (olo;,, 

(3) v = -4/(3q1 +q31. VW;). 
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The set of fixed points of this mapping is the conic A = AlA2 (see Definition 2), 
reducible into two straight lines A 1, AZ, where A 1 is the line of fixed points (y = const, 
x~oo,inthevariables~=I/y,~=l/x:~=O,~=const);A~:y=Oisthelineof 
fixed points. 
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